Применение математики к другим наукам имеет смысл только в единении с глубокой теорией конкретного явления. Об этом важно помнить, чтобы не
сбиваться на простую игру в формулы, за которой не стоит никакого
реального содержания.
Теоретические методы исследования в психологии и педагогике дают
возможность раскрыть качественные характеристики изучаемых явлений.
Эти характеристики будут полнее и глубже, если накопленный
материал подвергнуть количественной обработке. Однако,
проблема количественных измерений в рамках психолого-педагогических
исследований очень сложна. Эта сложность заключается, прежде всего, в
субъективно-причинном многообразии педагогической деятельности и ее
результатов, в самом объекте измерения, находящимся в состоянии
непрерывного движения и изменения. Вместе с тем введение в
исследование количественных показателей сегодня является необходимым и
обязательным компонентом получения объективных данных о результатах
педагогического труда. Как правило, эти данные могут быть получены как
путем прямого или опосредованного измерения различных составляющих
педагогического процесса, так и посредством количественной оценки
соответствующих параметров адекватно построенной его математической
модели. С этой целью при исследовании проблем психологии и педагогики
применяются методы математической статистики. С их помощью решаются
различные задачи: обработка фактического материала, получение новых,
дополнительных данных, обоснование научной организации исследования и
другие.
2 . Основные понятия математической статистики
2.1 Шкалы, выборка и генеральная совокупность
Значение психологического признака определяется при помощи измерительных шкал. Всего выделяют 4 типа шкал это:
- номинативная (присваивание какому-либо свойству определённого символа; например: двоичные варианты ответов испытуемых «Да» или «Нет», «За» или «Против»);
- порядковая (совокупность измеренных признаков по принципу «больше-меньше» , «сильнее-слабее»; например школьные оценки от 1 до 5);
- интервальная (для измерения с помощью этой шкалы устанавливаются специальные единицы измерения – стены. Нуль условен; например: измерение температуры по шкале Цельсия, где нуль – точка замерзания воды, но не отсутствия тепла вообще; тест IQ Векслера);
- шкала отношений (обладает всеми свойствами интервальной шкалы, но имеет твёрдо фиксированный ноль, который означает полное отсутствие свойства. Используется в химии, физике, психофизике. Примеры: рост, вес, число реакций и пр.)
выборкой
Понятие измерения в психологии. Измерительные шкалы
... множества реакций, строится и соответствующая шкала измерения. По общепринятой классификации для субъективных измерений обычно рассматривают четыре основных типа шкал Рассмотрим особенности психологических измерений более подробно. Значение психологических измерений не ограничивается только тем, ...
К выборке применяются 2 требования это:
- однородность, т.е. формирование группы испытуемых осуществляется на определённых основаниях, таких как возраст. Уровень интеллекта, национальность и пр.;
- репрезентативность – качество выборки, позволяющее распространять полученные на ней выводы на всю генеральную совокупность.
Рекомендуемым объемом для выборки является количество испытуемых не менее 30-35 человек в изучаемой группе.
2.2 Понятия мода, медиана, среднее арифметическое, дисперсия., Исключительно важную роль в анализе многих психолого-педагогических
явлений играют средние величины, представляющие собой обобщенную
характеристику качественно однородной совокупности по определенному
количественному признаку. Нельзя, например, вычислить среднюю
специальность или среднюю национальность студентов вуза, так как это
качественно разнородные явления. Зато можно и нужно определить в
среднем числовую характеристику их успеваемости (средний балл),
эффективности методических систем и приемов и т. д.
В психолого-педагогических исследованиях обычно применяются различные виды средних величин: средняя арифметическая, средняя геометрическая, медиана, мода и другие. Наиболее распространенными являются мода, медиана и средняя арифметическая.
Понятие мода заключается в следующем – это числовое значение, встречающееся в выборке наиболее часто. Обозначается через Мо . Например: в ряду 2, 3, 4, 5, 5, 5, 5, 6 мода = 5. Существует три условия нахождения моды:
- Если все значения в выборке встречаются одинаково часто, то такой ряд не имеет моды, например: 2, 2, 3, 3, 4, 4;
- Если два соседних значения имеют одинаковую частоту и их частота больше частот любых других значений, то мода есть среднее арифметическое этих двух значений. Например: 2, 3, 4, 4, 5, 5, 6, 7 Мо =(4+5):2=4,5
- Если же два не соседних значения имеют одинаковую частоту и их частота больше частот любых других значений, то выделяют две моды. Например: 2, 3, 3, 4, 5, 6, 6, 7 Мо =3, Мо =6
Медиана – это значение, которое делит упорядоченный ряд напополам и обозначается через Ме . Для нахождения медианы применяют два правила:
- Если ряд содержит нечётное число элементов, то медиана есть среднее значение. Например: 2, 6, 8, 10, 11, 12, 16 Ме =10
- Если же ряд содержит чётное число элементов, то медиана определяется, как среднее арифметическое двух центральных значений. Например: 2, 6, 9, 11, 12, 15 Ме =(9+11):2=10
Среднее арифметическое
где n – число элементов в выборке. Т.е. среднее арифметическое равно сумме элементов делённое на их количество.
Построение выборки в социологическом исследовании
... показателя, получаемой на основании исследования выборки, и истинным значением этого показателя в генеральной совокупности. К счастью, существуют ... изучения случайно распределенных признаков, например дохода или размера семьи, была впервые обоснована в работах норвежца А. Киэра, англичан ... выглядеть более или менее правдоподобно, однако сами по себе он: никогда не позволят обнаружить смещение или ...
Меру разброса данных
, где — элементы ряда х; а — среднее арифметическое элементов ряда х; n – число элементов в выборке.
Степень свободы
3. Корреляция и регрессия.
3.1 Понятие корреляции., Корреляция
линейной
Положительная связь Отрицательная связь
Линейная
Нелинейная
(монотонная)
Функциональные связи , подобные изображенным на рисунке, являются идеализациями. Их особенность заключается в том, что одному значению одной переменной соответствует строго определенное значение другой переменной. Например, такова взаимосвязь двух физических переменных — веса и длины тела (линейная положительная).
Однако даже в физических экспериментах эмпирическая взаимосвязь будет отличаться от функциональной связи в силу неучтенных или неизвестных причин: колебаний состава материала, погрешностей измерения и пр. Существующая в реальности функциональная связь между переменными выступает эмпирически как вероятностная одному и тому же значению одной переменной соответствует распределение различных значений другой переменной (и наоборот).
Простейшим примером является соотношение роста и веса людей. Эмпирические результаты исследования этих двух признаков покажут, конечно, положительную их взаимосвязь. Но она будет отличаться от строгой, линейной, положительной — идеальной математической функции, даже при всех ухищрениях исследователя по учету стройности или полноты испытуемых.
Корреляционный анализ
Регрессия – зависимость среднего значения какой-либо случайной величины (всякая наблюдаемая величина, изменяющаяся при повторении общего комплекса условий, в которых она возникает) от некоторой другой величины или нескольких других величин. Следовательно, при регрессионной связи одному и тому же значению величины X (в отличие от функциональной связи) могут соответствовать разные случайные значения величины Y.
Регрессионный
4. Методы статистического вывода
Приступая к определению того, как будут измерены изучаемые явления, необходимо представлять себе, какому методу статистического вывода будут соответствовать получаемые в процессе исследования исходные данные.
Первое основание
методы сравнения
Условия применения:
а) два признака измерены в ранговой или метрической шкале на одной и той же выборке; б) связь между признаками является монотонной (не меняет направления по мере увеличения значений одного из признаков).
Исследование взаимосвязи рефлексии и педагогического мастерства преподавателей
... новизна и теоретическая значимость: 1. В данной работе впервые была поставлена проблема исследования взаимосвязи рефлексии и профессионального педагогического мастерства преподавателей. 2. Уточнено понятие педагогического мастерства и разработан собственный подход к его ...