Значение нервной системы
нейронов,
2. Общий обзор строения нервной системы человека (центральная, периферическая нервная система).
Вегетативная нервная система
Центральная нервная система, Вегетативная нервная система, Особенности вегетативной нервной системы.
3. Строение спинного и головного мозга. Кора больших полушарий, основные области коры
Спинной мозг. Спинной мозг представляет собой длинный тяж. Он заполняет полость позвоночного канала и имеет сегментарное строение, соответствующее строению позвоночника. В центре спинного мозга расположено серое вещество — скопление нервных клеток, окруженное белым веществом, образованным нервными волокнами (рис. 7).
В спинном мозге находятся рефлекторные центры мускулатуры туловища, конечностей и шеи. С их участием осуществляются сухожильные рефлексы в виде резкого сокращения мышц (коленный, ахиллов рефлексы), рефлексы растяжения, сгибательные рефлексы, разные рефлексы, направленные на поддержание определенной позы. Рефлексы мочеиспускания и дефекации, рефлекторного набухания полового члена и извержения семени у мужчин (эрекция и эякуляция) связаны с функцией спинного мозга. Спинной мозг осуществляет и проводниковую функцию. Нервные волокна, составляющие основную массу белого вещества, образуют проводящие пути спинного мозга. По этим путям устанавливается связь между различными частями ЦНС и проходит импульсация в восходящем и нисходящем направлениях. По этим путям поступает информация в вышележащие отделы мозга, от которых отходят импульсы, изменяющие деятельность скелетной мускулатуры и внутренних органов. Деятельность спинного мозга у человека в значительной степени подчинена координирующим влияниям вышележащих отделов ЦНС. Обеспечивая осуществление жизненно важных функций, спинной мозг развивается раньше, чем другие отделы нервной системы. Когда у эмбриона головной мозг находится на стадии мозговых пузырей, спинной мозг достигает уже значительных размеров. На ранних стадиях развития плода спинной мозг заполняет всю полость позвоночного канала. Затем позвоночный столб обгоняет в росте спинной мозг, и к моменту рождения он заканчивается на уровне третьего поясничного позвонка. У новорожденных длина спинного мозга 14—16 см, к 10 годам она удваивается. В толщину спинной мозг растет медленно. На поперечном срезе спинного мозга детей раннего возраста отмечается преобладание передних рогов над задними. Увеличение размеров нервных клеток спинного мозга наблюдается у детей в школьные годы.
Регуляция работы нервной системы
... спинного мозга или двигательных ядрах головного мозга. 1. Рефлекс. Торможение. Доминанта Ответная реакция организма на раздражение из внешней или внутренней среды, осуществляющаяся при участии центральной нервной системы, называется рефлексом. ... и регуляцию функций внутри организма. В этом его биологическое значение. Рефлекс является функциональной единицей нервной деятельности. Вся нервная ...
Головной мозг.
задний мозг.
промежуточного мозга,
Гипоталамус принимает участие в регуляции температуры тела. Доказана его роль в регуляции водного обмена, обмена углеводов. Ядра гипоталамуса участвуют во многих сложных поведенческих реакциях (половые, пищевые, агрессивно-оборонительные).
Гипоталамус играет важную роль в формировании основных биологических мотиваций (голод, жажда, половое влечение) и эмоций положительного и отрицательного знака. Многообразие функций, осуществляемых структурами гипоталамуса, дает основание расценивать его как высший подкорковый центр регуляции жизненно важных процессов, их интеграции в сложные системы, обеспечивающие целесообразное приспособительное поведение.
Дифференцировка ядер гипоталамуса к моменту рождения не завершена и протекает в онтогенезе неравномерно. Развитие ядер гипоталамуса заканчивается в период полового созревания. Таламус (зрительный бугор) составляет значительную часть промежуточного мозга. Это многоядерное образование, связанное двусторонними связями с корой больших полушарий. В его состав входят три группы ядер. Релейные ядра передают зрительную, слуховую, кожно-мышечно-суставную информацию в соответствующие проекционные области коры больших полушарий. Ассоциативные ядра передают ее в ассоциативные отделы коры больших полушарий. Неспецифические ядра (продолжение ретикулярной формации среднего мозга) оказывают активизирующее влияние на кору больших полушарий.
Центростремительные импульсы от всех рецепторов организма (за исключением обонятельных), прежде чем достигнут коры головного мозга, поступают в ядра таламуса. Здесь поступившая информация перерабатывается, получает эмоциональную окраску и направляется в кору больших полушарий. К моменту рождения большая часть ядер зрительных бугров хорошо развита. После рождения размеры зрительных бугров увеличиваются за счет роста нервных клеток и развития нервных волокон. Онтогенетическая направленность развития структур промежуточного мозга состоит в увеличении их взаимосвязей с другими мозговыми образованиями, что создает условия для совершенствования координационной деятельности его различных отделов и промежуточного мозга в целом. В развитии промежуточного мозга существенная роль принадлежит нисходящим влияниям корковых полей конечного мозга.
Конечный,, Большие полушария головного мозга
На нижней и внутренней поверхности полушарий расположены старая и древняя кора, или архи- и палеокортекс. Функционально эти отделы коры больших полушарий тесно связаны с гипоталамусом, миндалиной, некоторыми ядрами среднего мозга. Все эти структуры составляют лимбическую систему мозга. Как будет показано дальше, лимбическая система играет важнейшую роль в формировании эмоций и внимания. В старой и древней коре расположены также высшие центры вегетативной регуляции. На наружной поверхности полушарий расположена филогенетически наиболее новая кора, появляющаяся только у млекопитающих и достигающая наибольшего развития у человека. Это неокортекс.
Кора больших полушарий
корковыми полями.
Ассоциативные волокна
кортиколизация функций,
Нервная система и головной мозг
... из переднего мозгового пузыря обособляются промежуточный мозг и 2 полушария с первичной корой мозга. У птиц доминируют средний и промежуточный мозг, сильно развит мозжечок, кора выражена слабо. Высшего развития нервная система достигает у млекопитающих, особенно у ...
Сенсорные области коры больших полушарий. Афферентные волокна, несущие сигналы от различных рецепторов, приходят к определенным зонам коры. Каждому рецепторному аппарату соответствует в коре определенная область. И.П. Павловым эти области были названы корковым ядром анализатора. В сенсорных зонах выделяют первичные и вторичные проекционные поля. Нейроны проекционных первичных полей выделяют отдельные признаки сигнала. В области зрительной проекции, например, анализируются место объекта в поле зрения, направление движения, контур, цвет, контраст. Разрушение этой области приводит к потере способности к первичному анализу внешних стимулов в определенной части поля зрения. При раздражении первичной зрительной зоны во время операций отмечается появление световых мельканий, цветовых пятен; при раздражении проекционного поля слуховой коры пациент слышит тоны, отдельные звуки.
При ограниченном поражении вторичных, например зрительных, полей больной отчетливо видит отдельные элементы изображения, но не может объединить их в целостный образ, узнать знакомый предмет (зрительная агнозия).
Раздражение вторичных сенсорных зон у человека во время операции вызывает оформленные предметные зрительные и сложные слуховые галлюцинации: звуки музыки, речи и т. д.
Сенсорные зоны локализованы в определенных областях коры: зрительная сенсорная зона располагается в затылочной области обоих полушарий, слуховая — в височной области, зона вкусовых ощущений — в нижней части теменных областей, соматосенсорная зона, анализирующая импульсацию с рецепторов мышц, суставов, сухожилий, кожи, располагается в области задней центральной извилины (см. рис. 10).
моторными
ассоциативных
В ассоциативной коре расположены и центры, связанные с речевой деятельностью. Ассоциативные области коры рассматриваются как структуры, ответственные за синтез поступающей информации, и как аппарат, необходимый для перехода от наглядного восприятия к абстрактным символическим процессам. С ассоциативными зонами коры связано формирование свойственной только человеку второй сигнальной системы.
Клинические наблюдения показывают, что при поражении заднеассоциативных областей нарушаются сложные формы ориентации в пространств, конструктивная деятельность, затрудняется выполнение всех интеллектуальных операций, которые осуществляются с участием пространственного анализа (счет, восприятие сложных смысловых изображений).
При поражении речевых зон нарушается возможность восприятия и воспроизведения речи. Поражение лобных отделов коры приводит к невозможности осуществления сложных программ поведения, требующих выделения значимых сигналов на основе прошлого опыта и предвидения будущего.
Развитие коры больших полушарий
Однако их структурное созревание— дифференцировка нервных клеток, формирование нейронных ансамблей и связей ассоциативной коры с другими отделами мозга — происходит вплоть до подросткового возраста. Наиболее поздно созревают лобные области коры. Как будет показано ниже, постепенность созревания структур коры больших полушарий определяет возрастные особенности высших нервных функций и поведенческих реакций детей дошкольного и младшего школьного возраста.
4. Развитие нервной системы, развитие нервной клетки (нерва), образование аксона, дендритов, рост и развитие спинного мозга, рост и развитие головного мозга, миелинизация нервных волокон и её значение, развитие коры больших полушарий, возрастные особенности нервной системы детей 6 лет
Мозг и нервная система человека
... нейронов или даже областей коры мозга. Методы исследования ЦНС. К ним относят хирургические, электрофизиологические, нейрохимические и молекулярно-генетические способы изучения нервной системы: хирургические методы: ... коре больших полушарий головного мозга) достигает 130 мК. Форма нейронов весьма многообразна. В каждом нейроне различают сому, или тело, и отростки. Последние разделяют на аксоны и ...
нервными центрами.
Нейрон — структурная единица нервной системы.
Нейрон — структурная и функциональная единица нервной системы, приспособленная для осуществления приема, обработки, хранения, передачи и интеграции информации. Эта сложноустроенная высокодифференцированная клетка состоит из тела, или сомы, и отростков разного типа — дендритов и аксонов (рис. 3).
Дендриты —
Покрывающая аксоны миелиновая оболочка интенсивно растет в постнатальном периоде, ее рост ведет к повышению скорости проведения по нервному волокну. Миелинизация раньше всего отмечена у периферических нервов, затем ей подвергаются волокна спинного мозга, стволовой части головного мозга, мозжечка и позже волокна больших полушарий головного мозга. Двигательные нервные волокна покрываются миелиновой оболочкой уже к моменту рождения, чувствительные (например, зрительные) в течение первых месяцев жизни ребенка. К. трехлетнему возрасту в основном завершается миелинизация нервных волокон, хотя рост миелиновой оболочки и осевого цилиндра продолжается и после трехлетнего возраста.
Период новорожденности.
Прикосновение к губам новорожденного или к соседним участкам кожи вызывает рефлекторные сосательные движения, что ведет к понижению общей возбудимости и прекращению двигательной активности. Такое состояние торможения двигательных центров мозга сохраняется не только во время сосания груди, но и в последующий период сытости, что способствует наступлению сна. Как правило, пробуждение наступает перед очередным кормлением, когда состояние сытости сменяется состоянием голода.
Иногда в начальном периоде внутриутробного развития нарушается нормальное образование органов, что ведет к появлению различных уродств. В частности, известны случаи недоразвития передних отделов мозга и даже полного отсутствия больших полушарий. Дети, рождающиеся с таким тяжелым дефектом, умирают в первые месяцы, реже в первые годы жизни. Наблюдения показали, что поведение таких детей очень сходно с поведением нормального ребенка в период новорожденности. Это дает основание полагать, что в первые дни жизни реакции организма осуществляются без участия коры больших полушарий и подкорковых ядер.
Установлено, однако, что клетки коры больших полушарий новорожденного могут приходить в состояние возбуждения под влиянием импульсов, поступающих из нижележащих отделов мозга. В коре возникают и ответные импульсы. Так, например, у новорожденных при участии коры происходит поворот глаз, а несколько позднее и головы в сторону появившегося света. Мало того, на основании изучения электрических реакций установлено, что уже в первые дни жизни в коре больших полушарий происходит различение красного и зеленого цвета.
Последующее развитие нервной системы.
Еще более интенсивно растет мозжечок. Если в коре больших полушарий клеточные слои, характерные для мозга взрослого человека, формируются уже к 6-му месяцу внутриутробного развития, то в коре мозжечка формирование слоев происходит после рождения и заканчивается к 9—11-му. месяцу жизни. К концу второго года вес мозжечка увеличивается почти в 5 раз по сравнению с его весом в период новорождённости. Такое позднее и вместе с тем быстрое развитие мозжечка объясняется тем, что основная функция, а именно уточнение двигательных реакций, и в частности поддержание нормального положения тела, может быть использована организмом лишь после приобретения первых навыков стояния и ходьбы к концу 1-го года жизни.
Основные принципы строения мозга
... коры больших полушарий в мозговой организации психических процессов. Кора больших полушарий (и прежде всего новая кора) является наиболее дифференцированным по строению и функциям отделом головного мозга. В недавнем прошлом коре больших полушарий ... исследований является утверждение нового подхода к изучению принципов организации мозга. Этот подход объединяет, с одной стороны, тщательное ...
клетками-спутниками,
Миелинизация нервных волокон как в центральной нервной системе, так и в периферической происходит очень интенсивно в последние месяцы внутриутробного развития. У новорожденного миелинизация нервных волокон спинного мозга и ствола головного мозга почти завершена. В значительной мере миелинизированы волокна черепно-мозговых и спинномозговых нервов.
Рис. 31. Развитие нейронов:
А — рост пирамидной клетки коры больших полушарий и разрастание дендритов; Б— расстояние между соседними нервными клетками у новорожденного (1), у двухлетнего ребенка (2)
Однако их Миелинизация продолжается и после рождения, заканчиваясь в основном к 2—3 годам жизни.
Как правило, Миелинизация ускоряется в тех группах волокон, которые начинают усиленно функционировать. Этим объясняется более ранняя Миелинизация у недоношенных младенцев. При хронических заболеваниях, связанных с ослаблением двигательной активности, Миелинизация волокон двигательных нервов может значительно задерживаться.
Миелинизация пирамидного пути, проходящего от двигательной области коры больших полушарий до двигательных клеток передних рогов серого вещества спинного мозга, начинается еще до рождения, а с 3-го месяца жизни почти приостанавливается. Лишь примерно с 8-го месяца, в связи с появлением первых попыток ходьбы, интенсивность миелинизации снова, и притом значительно, увеличивается. Миелинизация речевых центров коры в основном заканчивается к 1V2—2 годам, когда появляется речь.
Очень поздно (не ранее 2-го месяца жизни) начинается миелинизация тех волокон клеток коры больших полушарий, которые идут от одного участка коры к другому. Миелинизируются они очень постепенно, по мере усложнения высшей нервной деятельности. По-видимому, этот процесс прекращается лишь к старости. Особенно медленно указанные волокна получают миелиновую оболочку в лобной области коры, связанной с наиболее сложными проявлениями высшей нервной деятельности.
Функциональные особенности нервных клеток., Явления иррадиации и индукции.
В последующие годы устойчивость нервных клеток повышается. Увеличивается сила процессов возбуждения и торможения, в связи с чем более заметными становятся явления индукции: появление очага возбуждения сопровождается понижением возбудимости или торможением других участков мозга. Таким образом, создается препятствие для чрезмерной иррадиации возбуждения. Развитию явлений индукции способствует обучение ходьбе и другим более сложным двигательным актам. При сильном возбуждении, в частности при проявлении радости или огорчения, сохраняется резкая выраженность явлений иррадиации: ребенок прыгает или топает ножками; он весь во власти возбуждения, и никакие уговоры не могут его успокоить.
Особенности распространения возбуждения в центральной нервной системе
... утомляемость. облегчение проведения иррадиация торможение возбуждения Одностороннее проведение возбуждения в центральной нервной системе обусловлено наличием в нервных центрах синапсов, в которых передача возбуждения возможна только в одном направлении - от нервного окончания, выделяющего медиатор, к постсинаптической мембране. Задержка проведения возбуждения в нервных центрах ...
Дальнейшее усиление явлений взаимной индукции и связанная с этим большая концентрация процессов возбуждения и торможения создают предпосылки для усидчивой целенаправленной деятельности. Этому способствуют воспитание и обучение как в дошкольном, так и в младшем школьном возрасте.
5. Координация функций в организме
Рефлекс как реакция всего организма. Поток импульсов, возникший при раздражении зрительных, болевых или других рецепторов, поступает в мозг и становится источником согласованной, координированной ответной деятельности организма. Например, наступив босой ногой на острый предмет, ребенок отдергивает ногу. Казалось бы, этот рефлекс осуществляется небольшой группой мышц ноги, одни из которых сокращаются, а другие расслабляются. В действительности, однако, в реакцию включается чуть ли не весь двигательный аппарат. Чтобы отдернуть ногу, нужно в течение некоторого времени сохранить равновесие, стоя на одной ноге, а для этого необходимо быстрое и точное перераспределение тонуса многочисленных мышц всего тела. Мало того, в реакцию включаются и другие органы: на короткое время задерживается дыхание, изменяется частота и сила сердечных сокращений. Ребенок может лечь на землю, заплакать или стиснуть зубы. Иными словами, в рефлекторную реакцию включаются многие органы.
Личный опыт говорит нам о том, что одно и то же раздражение в разных случаях приводит к совершенно различным, но всегда координированным реакциям. Сложность и разнообразие даже самых простых рефлексов объясняется возможностью распространения импульсов по разным направлениям в самые различные отделы мозга. Именно эта возможность позволяет говорить о рефлексе как о координированной реакции всего организма.
Значение афферентных импульсов.
Существует заболевание, при котором в спинном мозге нарушаются пути, проводящие импульсы от нижних конечностей в головной мозг. Иными словами, прекращается информация о том», в каком положении находится каждая мышца, а, следовательно, и вся нога в целом. Человек не знает, согнута она или разогнута. Лишь смотря на ноги, т. е. получая соответствующую информацию с органов зрения, он в состоянии выполнить необходимое движение ногами и сохранить равновесие при стоянии и ходьбе.
и индукция возбуждения и торможения.
Иррадиация чаще всего проявляется в общем повышении или понижении возбудимости нервной системы. Так, например, возбудимость повышается при получении радостной вести и понижается при получении печальной. В первом случае человек становится бодрым, жизнерадостным, а во втором — подавленным, ко всему безразличным. Проявляется иррадиация и в увеличении количества органов, принимающих участие в реакции. Так, при сильном сжимании кисти сокращаются мышцы руки и даже других частей тела.
индукцией.
Если бы явления иррадиации или индукции захватывали весь мозг, была бы невозможна никакая координация. В действительности и иррадиация, и индукция носят, как принято говорить, избирательный характер: в каждом отдельном случае они захватывают лишь определенные группы клеток. При этом в той или иной степени участвуют оба процесса; возбудимость одних клеточных групп изменяется под влиянием иррадиации, а других — под влиянием индукции. Мало того, как индукция, так и иррадиация могут протекать во времени. Иными словами, нервные клетки после возбуждения в силу индукции переходят в состояние пониженной возбудимости, а торможение может смениться повышенной возбудимостью. Иррадиация во времени проявляется в сохранении клетками состояния повышенной или пониженной возбудимости в течение некоторого времени по окончании действия раздражителя. Существенную роль при этом играет описанная выше кольцевая связь между нейронами.
Реферат торможение в центральной нервной системе
... нервной системы. Например, к одному и тому же нейрону могут конвергировать импульсы от слуховых, зрительных, кожных рецепторов. 2. Принцип иррадиации. Возбуждение или торможение, возникнув в одном нервном ... основой акта внимания. Формирование и торможение условных рефлексов так же связано с доминантным очагом возбуждения. В нервной системе по современным представлениям, имеются специфические ...
Иррадиация и индукция взаимно ограничивают друг друга. Как правило, слабые очаги возбуждения и торможения не вызывают значительной индукции, что способствует процессу иррадиации. Чем сильнее очаг возбуждения или торможения, тем интенсивнее проявляется индукция и, следовательно, тем менее благоприятны условия для иррадиации. При очень сильном очаге возбуждения или торможения, наоборот, иррадиация оказывается столь значительной, что преодолевает препятствия, создаваемые индукцией.
Если человек выполняет работу, которая для него важна или интересна, либо читает увлекательную книгу, очаги возбуждения в мозге могут оказаться достаточно сильными, чтобы вызвать мощную индукцию. В результате возбудимость многих других участков мозга сильно понижается. Это проявляется в том, что человека не отвлекают посторонние мысли, у него не рассеивается внимание, и он даже не замечает, что происходит вокруг. При действии слабых раздражителей, например при чтении очень скучной книги, внимание, наоборот, легко рассеивается, что связано с превалированием иррадиации возбуждения.
В результате взаимодействия иррадиации и индукции мозг представляет собой как бы мозаику очагов повышенной и пониженной возбудимости. Непрерывная и закономерно протекающая перестройка очагов возбуждения и торможения приводит к созданию самых разнообразных комбинаций согласованной работы органов.
Доминанта.
Дыхание и глотание — два физиологических акта, которые не могут протекать одновременно. А, следовательно, невозможно одновременное возбуждение соответствующих нервных центров. При глотании на короткое время господствующим становится глотательный центр, тогда как дыхательный — заторможен.
доминанты.
Доминантное состояние поддерживается импульсами, не только приходящими от соответствующих рецепторов, но и возникающими под влиянием раздражителей, не имеющих непосредственного отношения к доминирующему центру. Так, например, если во время лакания молока раздражать лапу щенка электрическим током, он не отдергивает лапу, а начинает лакать с еще большей интенсивностью. Такое же раздражение до или после лакания вызывает болевую реакцию: щенок отдергивает лапу и визжит. Следовательно, сторонние раздражители усиливают доминанту, делая ее более стойкой. В процессе нервной деятельности одна доминанта сменяет другую, но всякий раз текущая доминанта обеспечивает направленную активность нервной системы.
Роль отдельных частей мозга в координации движений., Литература
1. Кабанов А.Н. и Чабовская А.П. Анатомия, физиология и гигиена детей дошкольного возраста. Учебник для дошкольных педучилищ. М., «Просвещение», 1969. 288 с илл.
2. Хрипкова А.Г. Возрастная физиология и школьная гигиена. М. Просвещение 1990г.
Синдромы преждевременного возбуждения желудочков
... антеградном направлении. НА ЭКГ во время синусового ритма признаков преждевременного возбуждения желудочков нет. Скрытый синдром WPW проявляется тахиаритмией, его выявление возможно при электростимуляции желудочков. e. ЭКГ ... -признаки синдрома WPW 1. Короткий интервал P -- R (P -- Q) -- менее 0,12 с. 2. Волна ?. Её появление связано со «сливным» сокращением желудочков (возбуждение желудочков ...