Будущее искусственного интеллекта

Развитие «искусственного интеллекта» будоражит человеческий ум уже добрых полвека. Компьютеры прочно вошли в нашу повседневную жизнь. Работа в современном офисе немыслима без интернета, электронной почты, а заслуженный отдых для многих начинается только тогда, когда включается игровая приставка. Мобильные телефоны третьего поколения теперь не только передают голос, но и легко заменяют практически любое офисное оборудование. Появились даже автомобили с бортовыми компьютерами, которые могут составить маршрут поездки и доставить пассажира до точки назначения.

В первом процессоре, выпущенном Intel 11 ноября 1971 г., 2.300 транзисторов уместились на схеме размером с ноготь. Микрочип выполнял 60 тыс. операций в секунду — ничто по современным меркам, но тогда это был серьезный прорыв. Вскоре после процессора 4004 корпорация Intel представила микропроцессор 8008, который обрабатывал за один цикл 8 бит информации, т.е. вдвое больше, чем первая микросхема.

С тех пор вычислительные технологии шагнули далеко вперед. Например, подсчитано, что за 30 лет существования микропроцессоров минимальный размер элементов процессора уменьшился в 17 раз, тогда как количество транзисторов увеличилось в 18 тыс. раз, а тактовая частота возросла в 14 тыс. раз. Нынешняя технология производства процессоров, применяемая корпорацией Intel, позволяет производить транзисторы размером с молекулу, а в будущем — в несколько атомных слоев.

Цель моего реферата — раскрыть суть искусственного интеллекта и предположить его развитие в будущем.

1. Базовые понятия искусственного интеллекта

Термин интеллект (intelligence) происходит от латинского intellectus — что означает ум, рассудок, разум; мыслительные способности человека. Соответственно искусственный интеллект (artificial intelligence) — ИИ (AI) обычно толкуется как свойство автоматических систем брать на себя отдельные функции интеллекта человека, например, выбирать и принимать оптимальные решения на основе ранее полученного опыта и рационального анализа внешних воздействий. В моем реферате интеллектом будет называться способность мозга решать (интеллектуальные) задачи путем приобретения, запоминания и целенаправленного преобразования знаний в процессе обучения на опыте и адаптации к разнообразным обстоятельствам. В этом определении под термином «знания» подразумевается не только ту информацию, которая поступает в мозг через органы чувств. Такого типа знания чрезвычайно важны, но недостаточны для интеллектуальной деятельности. Дело в том, что объекты окружающей нас среды обладают свойством не только воздействовать на органы чувств, но и находиться друг с другом в определенных отношениях. Ясно, что для того, чтобы осуществлять в окружающей среде интеллектуальную деятельность (или хотя бы просто существовать), необходимо иметь в системе знаний модель этого мира. В этой информационной модели окружающей среды реальные объекты, их свойства и отношения между ними не только отображаются и запоминаются, но и, как это отмечено в данном определении интеллекта, могут мысленно «целенаправленно преобразовываться». При этом существенно то, что формирование модели внешней среды происходит «в процессе обучения на опыте и адаптации к разнообразным обстоятельствам».

11 стр., 5297 слов

Проблема искусственного интеллекта

... искусственным интеллектом и искусственной жизнью. При этом, очевидно, возможно взаимовлияние искусственного интеллекта и искусственной жизни на философские проблемы мышления и на жизнь вообще. Понятие искусственного интеллекта ... что задача есть только тогда, когда есть работа для мышления, т. е. ... на основе знаний, получаемых дополнительно из среды, для поведения в которой вырабатывается схема ...

Интеллект и мышление органически связаны с решением таких задач, как доказательство теорем, логический анализ, распознавание ситуаций, планирование поведения, игры и управление в условиях неопределенности. Характерными чертами интеллекта, проявляющимися в процессе решения задач, являются способность к обучению, обобщению, накоплению опыта (знаний и навыков) и адаптации к изменяющимся условиям в процессе решения задач. Благодаря этим качествам интеллекта мозг может решать разнообразные задачи, а также легко перестраиваться с решения одной задачи на другую. Таким образом, мозг, наделенный интеллектом, является универсальным средством решения широкого круга задач (в том числе неформализованных) для которых нет стандартных, заранее известных методов решения.

2. История развития систем искусственного интеллекта

Исторически сложились три основных направления в моделировании искусственного интеллекта.

В рамках первого подхода объектом исследований являются структура и механизмы работы мозга человека, а конечная цель заключается в раскрытии тайн мышления. Необходимыми этапами исследований в этом направлении являются построение моделей на основе психофизиологических данных, проведение экспериментов с ними, выдвижение новых гипотез относительно механизмов интеллектуальной деятельности, совершенствование моделей и т. д.

Второй подход в качестве объекта исследования рассматривает искусственный интеллект. Здесь речь идет о моделировании интеллектуальной деятельности с помощью вычислительных машин. Целью работ в этом направлении является создание алгоритмического и программного обеспечения вычислительных машин, позволяющего решать интеллектуальные задачи не хуже человека.

Наконец, третий подход ориентирован на создание смешанных человеко-машинных, или, как еще говорят, интерактивных интеллектуальных систем, на симбиоз возможностей естественного и искусственного интеллекта. Важнейшими проблемами в этих исследованиях является оптимальное распределение функций между естественным и искусственным интеллектом и организация диалога между человеком и машиной.

Самыми первыми интеллектуальными задачами, которые стали решаться при помощи ЭВМ были логические игры (шашки, шахматы), доказательство теорем. Хотя, правда здесь надо отметить еще кибернетические игрушки типа «электронной мыши» Клода Шеннона, которая управлялась сложной релейной схемой. Эта мышка могла «исследовать» лабиринт, и находить выход из него. А, кроме того, помещенная в уже известный ей лабиринт, она не искала выход, а сразу же, не заглядывая в тупиковые ходы, выходила из лабиринта.

13 стр., 6288 слов

Естественный и искусственный интеллект

... изобретательности, высокой квалификации. Иными словами, участия интеллекта. Если алгоритм решения задачи известен, сам процесс решения становится почти автоматическим, он под силу и вычислительной машине, и роботу — надо только выполнять действия, предусмотренные ...

Американский кибернетик А. Самуэль составил для вычислительной машины программу, которая позволяет ей играть в шашки, причем в ходе игры машина обучается или, по крайней мере, создает впечатление, что обучается, улучшая свою игру на основе накопленного опыта. В 1962 г. эта программа сразилась с Р. Нили, сильнейшим шашистом в США и победила.

Каким образом машине удалось достичь столь высокого класса игры? Естественно, что в машину были программно заложены правила игры так, что выбор очередного хода был подчинен этим правилам. На каждой стадии игры машина выбирала очередной ход из множества возможных ходов согласно некоторому критерию качества игры. В шашках (как и в шахматах) обычно невыгодно терять свои фигуры, и, напротив, выгодно брать фигуры противника. Игрок (будь он человек или машина), который сохраняет подвижность своих фигур и право выбора ходов и в то же время держит под боем большое число полей на доске, обычно играет лучше своего противника, не придающего значения этим элементам игры. Описанные критерии хорошей игры сохраняют свою силу на протяжении всей игры, но есть и другие критерии, которые относятся к отдельным ее стадиям — дебюту, миттэндшпилю, эндшпилю.

Разумно сочетая такие критерии (например, в виде линейной комбинации с экспериментально подбираемыми коэффициентами или более сложным образом), можно для оценки очередного хода машины получить некоторый числовой показатель эффективности — оценочную функцию. Тогда машина, сравнив между собой показатели эффективности очередных ходов, выберет ход, соответствующий наибольшему показателю. Подобная автоматизация выбора очередного хода не обязательно обеспечивает оптимальный выбор, но все же это какой-то выбор, и на его основе машина может продолжать игру, совершенствуя свою стратегию (образ действия) в процессе обучения на прошлом опыте. Формально обучение состоит в подстройке параметров (коэффициентов) оценочной функции на основе анализа проведенных ходов и игр с учетом их исхода. Машина, использующая этот вид обучения, может научиться играть лучше, чем средний игрок, за относительно короткий период времени.

Можно сказать, что все эти элементы интеллекта, продемонстрированные машиной в процессе игры в шашки, сообщены ей автором программы. Отчасти это так. Но не следует забывать, что программа эта не является «жесткой», заранее продуманной во всех деталях. Она совершенствует свою стратегию игры в процессе самообучения. И хотя процесс «мышления» у машины существенно отличен оттого, что происходит в мозгу играющего в шашки человека, она способна у него выиграть.

Ярким примером сложной интеллектуальной игры до недавнего времени являлись шахматы. В 1974 г. состоялся международный шахматный турнир машин, снабженных соответствующими программами. Как известно, победу на этом турнире одержала советская машина с шахматной программой «Каисса».

Недавние события показали, что, несмотря на довольно большую сложность шахмат, и невозможность, в связи с этим произвести полный перебор ходов, возможность перебора их на большую глубину, чем обычно, очень увеличивает шансы на победу.

7 стр., 3439 слов

«ПЕДАГОГИЧЕСКИЕ УСЛОВИЯ ПРИМЕНЕНИЯ КОМПЬЮТЕРНЫХ ИГР В ВОСПИТАНИИ ...

... взрослых. Игра удовлетворяет потребность детей в познании мира. 1.2. Влияние компьютерной игры на развитие дошкольника. Существующие компьютерные программы ... детей к обучению в школе. Обучающая функция компьютерных игр является одной из важнейших ее характеристик. Компьютерные игры устроены ... еще водить машину, управлять самолетом, лечить больных, ребенок реализует себя в игре. В игре все возможно. ...

В настоящее время существуют и успешно применяются программы, позволяющие машинам играть в деловые или военные игры, имеющие большое прикладное значение. Здесь также чрезвычайно важно придать программам присущие человеку способность к обучению и адаптации. Одной из наиболее интересных интеллектуальных задач, также имеющей огромное прикладное значение, является задача обучения распознавания образов и ситуаций. Решением ее занимались и продолжают заниматься представители различных наук — физиологи, психологи, математики, инженеры. Такой интерес к задаче стимулировался фантастическими перспективами широкого практического использования результатов теоретических исследований: читающие автоматы, системы искусственного интеллекта, ставящие медицинские диагнозы, проводящие криминалистическую экспертизу и т.п., а также роботы, способные распознавать и анализировать сложные сенсорные ситуации.

В 1957 г. американский физиолог Ф. Розенблатт предложил модель зрительного восприятия и распознавания — перцептрон. Появление машины, способной обучаться понятиям и распознавать предъявляемые объекты, оказалось чрезвычайно интересным не только физиологам, но и представителям других областей знания и породило большой поток теоретических и экспериментальных исследований. Перцептрон или любая программа, имитирующая процесс распознавания, работают в двух режимах: в режиме обучения и в режиме распознавания. В режиме обучения некто (человек, машина, робот или природа), играющий роль учителя, предъявляет машине объекты и о каждом их них сообщает, к какому понятию (классу) он принадлежит. По этим данным строится решающее правило, являющееся, по существу, формальным описанием понятий. В режиме распознавания машине предъявляются новые объекты, и она должна их классифицировать, по возможности, правильно.

Проблема обучения распознаванию тесно связана с другой интеллектуальной задачей — проблемой перевода с одного языка на другой, а также обучения машины языку. При достаточно формальной обработке и классификации основных грамматических правил и приемов пользования словарем можно создать вполне удовлетворительный алгоритм для перевода, скажем научного или делового текста. Для некоторых языков такие системы были созданы еще в конце 60-г. Однако для того, чтобы связно перевести достаточно большой разговорный текст, необходимо понимать его смысл. Работы над такими программами ведутся уже давно, но до полного успеха еще далеко. Имеются также программы, обеспечивающие диалог между человеком и машиной на урезанном естественном языке.

Что же касается моделирования логического мышления, то хорошей модельной задачей здесь может служить задача автоматизации доказательства теорем. Начиная с 1960 г., был разработан ряд программ, способных находить доказательства теорем в исчислении предикатов первого порядка. Эти программы обладают, по словам американского специалиста в области искусственного интеллекта Дж. Маккатти, «здравым смыслом», т.е. способностью делать дедуктивные заключения.

В программе К. Грина и др., реализующей вопросно-ответную систему, знания записываются на языке логики предикатов в виде набора аксиом, а вопросы, задаваемые машине, формулируются как подлежащие доказательству теоремы. Большой интерес представляет «интеллектуальная» программа американского математика Хао Ванга. Эта программа за 3 минуты работы IBM-704 вывела 220 относительно простых лемм и теорем из фундаментальной математической монографии, а затем за 8,5 мин выдала доказательства еще 130 более сложных теорем, часть их которых еще не была выведена математиками. Правда, до сих пор ни одна программа не вывела и не доказала ни одной теоремы, которая бы, что называется «позарез» была бы нужна математикам и была бы принципиально новой.

10 стр., 4802 слов

Контрольная работа — Обучение как средство развития речи ...

... и актуальных тем по методике развития детской речи - тема «Обучение как средство развития речи детей дошкольного возраста». Объект исследования является процесс формирования речи детей дошкольного возраста, а предметом – обучение как средство развития речи дошкольников. Цель контрольной работы – рассмотреть обучение как средство развития речи детей дошкольного возраста. Из цели можно выделить ...

Очень большим направлением систем искусственного интеллекта является роботехника. В чем основное отличие интеллекта робота от интеллекта универсальных вычислительных машин?

Элементы интеллекта робота служат, прежде всего, для организации его целенаправленных движений. В то же время основное назначение чисто компьютерных систем искусственного интеллекта состоит в решении интеллектуальных задач, носящих абстрактный или вспомогательный характер, которые обычно не связаны ни с восприятием окружающей среды с помощью искусственных органов чувств, ни с организацией движений исполнительных механизмов.

Первых роботов трудно назвать интеллектуальными. Только в 60-х годах появились очувствленные роботы, которые управлялись универсальными компьютерами. К примеру в 1969 г. в Электротехнической лаборатории (Япония) началась разработка проекта «промышленный интеллектуальный робот». Цель этой разработки — создание очувствленного манипуляционного робота с элементами искусственного интеллекта для выполнения сборочно-монтажных работ с визуальным контролем. Манипулятор робота имеет шесть степеней свободы и управляется мини-ЭВМ NEAC-3100 (объем оперативной памяти 32000 слов, объем внешней памяти на магнитных дисках 273000 слов), формирующей требуемое программное движение, которое отрабатывается следящей электрогидравлической системой. Схват манипулятора оснащен тактильными датчиками. В качестве системы зрительного восприятия используются две телевизионные камеры, снабженные красно-зелено-синими фильтрами для распознавания цвета предметов. Поле зрения телевизионной камеры разбито на 64*64 ячеек. В результате обработки полученной информации грубо определяется область, занимаемая интересующим робота предметом. Далее, с целью детального изучения этого предмета выявленная область вновь делится на 4096 ячеек. В том случае, когда предмет не помещается в выбранное «окошко», оно автоматически перемещается, подобно тому, как человек скользит взглядом по предмету. Робот Электротехнической лаборатории был способен распознавать простые предметы, ограниченные плоскостями и цилиндрическими поверхностями при специальном освещении. Стоимость данного экспериментального образца составляла примерно 400000 долларов.

Постепенно характеристики роботов монотонно улучшались, Но до сих пор они еще далеки по понятливости от человека, хотя некоторые операции уже выполняют на уровне лучших жонглеров. К примеру, удерживают на лезвии ножа шарик от настольного тенниса.

Еще, пожалуй, здесь можно выделить работы киевского Института кибернетики, где под руководством Н.М. Амосова и В.М. Глушкова (ныне покойного) ведется комплекс исследований, направленных на разработку элементов интеллекта роботов. Особо е внимание в этих исследованиях уделяется проблемам распознавания изображений и речи, логического вывода (автоматического доказательства теорем) и управления с помощью нейроподобных сетей. К примеру можно рассмотреть созданный еще в 70-х годах макет транспортного автономного интегрального робота (ТАИР).

7 стр., 3419 слов

Искусственный разум

... задач. Так же существуют термины «сильный» и «слабый» искусственный интеллект. Термин «сильный искусственный интеллект» ввел Джон Сёрль, такая ... робота и его манипулятора. Другими важнейшими подсистемами робота, являются система связи с человеком и когнитивная система. В когнитивной системе производится обработка всей полученной информации, необходимой для управления собственным поведением робота ...

Конструктивно ТАИР представляет собой трехколесное шасси, на котором смонтирована сенсорная система и блок управления. Сенсорная система включает в себя следующие средства очувствления: оптический дальномер, навигационная система с двумя радиомаяками и компасом, контактные датчики, датчики углов наклона тележки, таймер и др. И особенность, которая отличает ТАИР от многих других систем, созданных у нас и за рубежом, это то, что в его составе нет компьютера в том виде, к которому мы привыкли. Основу системы управления составляет бортовая нейроподобная сеть, на которой реализуются различные алгоритмы обработки сенсорной информации, планирования поведения и управления движением робота.

3. Будущее искусственного интеллекта

Индустрия информационных технологий — одна из наиболее динамично развивающихся сфер жизни. В соответствии с законом Мура, в 2020 году компьютеры достигнут мощности человеческого мозга, т.к. смогут выполнять 20 квадриллионов (т.е. 20.000.000 миллиардов) операций в секунду, а к 2060 году, как считают некоторые футурологи, компьютер сравняется по силе разума со всем человечеством. Впрочем, еще в 1994 году ПК на базе процессора Intel Pentium со смехотворной, по нынешним временам, частотой 90 МГц обыграл в серии турниров по шахматам нескольких сильнейших гроссмейстеров мира, включая действующего чемпиона планеты — Гарри Каспарова.

Тот же Гордон Мур в середине 90-х годов так сравнивал темпы развития микропроцессорных технологий и автомобильной промышленности: «Если бы автомобильная промышленность развивалась с той же скоростью, что индустрия полупроводников, то «Роллс-ройс» смог бы сегодня преодолеть расстояние в полмиллиона миль на одном галлоне бензина, причем его было бы дешевле каждый раз выбрасывать, чем парковать».

Сегодняшние информационные технологии уже способны на многое. В последнее время активно развивается разработка телематических терминалов (бортовых систем управления) для автомобилей. По данным аналитической компании Forrester Research, к 2006 году телематическими терминалами для обработки и передачи информации будет оборудовано около 80% от общего числа новых машин.

Уже сегодня существуют реальные возможности применения такого рода технологий в практически любом автомобиле. Например, телефонная гарнитура BlueConnect производства компании Johnson Controls — интегрированный автомодуль hands-free на базе процессоров Intel PXA250 и Intel PXA210 — позволяет водителю выполнять самые разнообразные действия, активизируемые голосом, с помощью сотового телефона и технологии Bluetooth.

Еще одним устройством, в котором применены новые процессоры, является мультимедийная автомобильная платформа, которая предоставляет пассажирам автономный доступ к таким ресурсам, как видео в формате DVD и аудиозаписям в формате MP3, транслируемым по сети Media Oriented System Transport (MOST).

7 стр., 3088 слов

Искусственный интеллект

... наиболее прагматическая, основана на том, что в результате исследований, проводимых в области искусственного интеллекта, появляется множество ... планирование поведения, игры и управление в условиях неопределенности. Характерными чертами интеллекта, проявляющимися в процессе решения ... вычислительная машина (должным образом запрограммированная) или робот, не имеющие ни малейшего представления о сущность ...

Автомобилестроение — только одна из многих сфер жизни, где микропроцессоры занимают все большее место. Очевидно, что с каждым годом все более мощные микропроцессоры будут применяться во все большем количестве различных бытовых устройствах. Недавно специалистами Intel были разработаны транзисторы, скорость действия которых превышает скорость Pentium 4 почти на 1000%. Тем самым было доказано, что нет никаких фундаментальных препятствий для продолжения развития микропроцессоров в соответствии с законом Мура до конца текущего десятилетия.

Такие транзисторы, имеющие размер всего 20 нанометров, позволят компании Intel к 2007 г. создать процессоры с миллиардом транзисторов, работающие на частоте до 20 ГГц при напряжении питания около 1 вольт. А руководство компании уже говорит о грядущих процессорах с тактовой частотой до 30 ГГц. Предпосылки для производства таких микропроцессоров в Intel уже созданы

Сегодня, например, в Animat Lab разрабатывается проект Psikharpax, где в роботе синтезируются некоторые из адаптивных механизмов и нервных структур, ответственных за пространственную навигацию у крыс. Способности этой крысы-робота будут расти за счет «обучения без учителя», то есть анимат будет сам строить когнитивную карту среды и вырабатывать адаптивные стратегии поведения по механизмам, схожим с теми, что использует мозг крысы. В группе гуманоидной роботики (Humanoid Robotics Group) из лаборатории искусственного интеллекта в MIT сегодня разрабатываются обезьяноподобные и мобильные роботы (Kismet, Сосо) с гораздо более сложным, чем у первых насекомоподобных роботов, поведенческим репертуаром, куда, в частности, входят способности к социальным взаимодействиям и аффективным эмоциональным реакциям.

Кроме того, эксперименты с такими роботами могут стимулировать появление новых идей, проливающих свет на принципы адаптивного поведения. Как минимум, такие эксперименты позволяют отсекать заведомо нереалистичные теории. Моделирование как средство элиминации ошибок — мощный инструмент в познании работы мозга. Поэтому многие нейробиологи настаивают на том, что теории работы мозга должны быть сформулированы алгоритмично, чтобы допускать моделирование. Один из ведущих нейробиологов-теоретиков, Нобелевский лауреат Джеральд Эделман стал и одним из пионеров эволюционного обучения роботов. Эделман, создавший фундаментальную теорию работы мозга и биологических основ сознания, в своем институте в Калифорнии (Neuroscience Institute) разрабатывает серию роботов NOMAD. Эти роботы имеют еще и родовое имя «Дарвин». Каждый новый «Дарвин» появляется на свет практически необученным, но, сталкиваясь с объектами внешнего мира и имея какое-нибудь врожденное предпочтение, начинает вырабатывать собственные абстрактные категории. У робота появляются знания, которые он может использовать и в других задачах. То есть начинает работать один из принципов, по которым, судя по всему, шла эволюция механизмов интеллекта.

Заключение

Исследования в области «искусственного интеллекта» к настоящему времени привели к ряду впечатляющих результатов. Именно поэтому остро стоящий в 60-е годы XX века вопрос «может ли машина мыслить?» в настоящее время не вызывает такого интереса, поскольку на ЭВМ удалось смоделировать некоторые интеллектуальные процедуры. Более того, некоторые программные продукты по результатам своей деятельности оказываются эффективнее, чем деятельность человеческого мозга.

13 стр., 6112 слов

Философские проблемы искусственного интеллекта

... работы исследователей естественного и искусственного интеллекта. В научном смысле эти программы рассматриваются как экспериментальные для создания моделей разумного поведения. Многие ситуации применения искусственного интеллекта подняли глубокие философские ... мозге, можно обеспечить развитие и внедрение обновленных подходов в разработке искусственного интеллекта. Необходимо учитывать, что сознание ...

В последние десять-пятнадцать лет стремительно нарастает объем исследований и практических разработок в области искусственного интеллекта, использующих эволюционную парадигму при решении задач управления, оптимизации, конструирования роботов и коллективов роботов для решения сложных, плохо формализуемых задач — в частности, связанных с автономной работой в экстремальных условиях.

Выявленная особенность человеческого сознания к «схватыванию идей» и составляет сердцевину механизма работы сознания, что является одним из важных итогов философского исследования природы (сущности) сознания. Моделирование этой способности человеческого мышления позволит перейти на качественно новую ступень развития искусственного интеллекта, позволяющую говорить о моделировании сознания как такового.

Список литературы

[Электронный ресурс]//URL: https://psychoexpert.ru/referat/buduschee-iskusstvennogo-intellekta/

1. Левкович-Маслюк Л. Естественный путь к искусственному интеллекту. // Компьютерра. — 23 октября 2002 г.

2. Лорьер Ж.-Л. Системы искусственного интеллекта. — М.: Мир, 1991.

3. Сергеев В.М. Искусственный интеллект: Опыт философского осмысления //Будущее искусственного интеллекта. — М.: Наука, 1991.