Физиология нервных клеток

Реферат

афферентные, эфферентные, промежуточные

Афферентные нейроны, Эфферентные нейроны, Промежуточные нейроны

1. Строение и функции элементов нервной клетки

Различные структурные элементы нейрона имеют свои функциональные особенности и разное физиологическое значение. Нервная клетка состоит из тела, или сомы, и различных отростков. Многочисленные древовидно разветвленные отростки дендриты (от греч. dendron — дерево) служат входами нейрона, через которые сигналы поступают в нервную клетку. Выходом нейрона является отходящий от тела клетки отросток аксон (от греч. axis — ось), который передает нервные импульсы дальше — другой нервной клетке или рабочему органу (мышце, железе).

 строение и функции элементов нервной клетки 1

Форма нервной клетки, длина и расположение отростков чрезвычайно разнообразны и зависят от функционального назначения нейрона.

Среди нейронов встречаются самые крупные клеточные элементы организма. Размеры их поперечника колеблются от 6-7 мк (мелкие зернистые клетки мозжечка) до 70 мк (моторные нейроны головного и спинного мозга).

Плотность их расположения в некоторых отделах центральной нервной системы очень велика. Например, в коре больших полушарий человека на 1мм 3 приходится почти 40 тыс. нейронов. Тела и дендриты нейронов коры занимают в целом примерно половину объема коры.

В крупных нейронах почти 1 /31 /4 величины их тела составляет ядро. Оно содержит довольно постоянное количество дезоксирибонуклеиновой кислоты (ДНК).

Входящие в его состав ядрышки участвуют в снабжении клетки рибонуклеиновыми кислотами (РНК) и протеинами. В моторных клетках при двигательной деятельности ядрышки заметно увеличиваются в размерах. Нервная клетка покрыта плазматической мембраной, полупроницаемой клеточной оболочкой, которая обеспечивает регуляцию концентрации ионов внутри клетки и ее обмен с окружающей средой. При возбуждении проницаемость клеточной мембраны изменяется, что играет важнейшую роль в возникновении потенциала действия и передаче нервных импульсов. Аксоны многих нейронов покрыты миелиновой оболочкой, образованной Шванновскими клетками, многократно «обернутыми» вокруг ствола аксона. Однако начальная часть аксона и расширение в месте его выхода из тела клетки — аксонный холмик лишены такой оболочки. Мембрана этой немиелинизированной части нейрона — так называемого начального сегмента — обладает высокой возбудимостью.

6 стр., 2518 слов

Нервная система насекомых

... работы нервной системы насекомых невозможно без изучения подробного строения нервной ткани. нервный нейрон насекомый мозг ГЛАВА I. НЕЙРОН КАК СТРУКТУРНАЯ ЕДИНИЦА НЕРВНОЙ СИСТЕМЫ Простейший элемент нервной системы носит название нейрон. Это не что иное, как нервная клетка, покрытая ...

цитоплазмой,

митохондриях

2. Обмен веществ в нейроне

высокая скорость обмена и преобладание аэробных

Основным источником энергии

[Электронный ресурс]//URL: https://psychoexpert.ru/referat/stroenie-nervnoy-kletki/

трофическими процессами —

3. Глиальные клетки

питания нервных клеток

Глиальные клетки обладают способностью перемещаться в пространстве по направлению к наиболее активным нейронам. Это наблюдается при различных афферентных раздражениях и при мышечной нагрузке. Например, уже через 20 мин. плавания у крыс было обнаружено увеличение числа глиальных клеток вокруг мотонейронов переднего рога спинного мозга.

Возможно, клетки глии участвуют в условно-рефлекторной деятельности мозга и в процессах памяти.

4. Основные функции нервной клетки

Основными функциями нервной клетки являются восприятие внешних раздражений (рецепторная функция), их переработка (интегративная функция) и передача нервных влияний на другие нейроны или различные рабочие органы (эффекторная функция).

Особенности осуществления этих функций позволяют разделить все нейроны центральной нервной системы на 2 большие группы:

1) клетки, передающие информацию на большие расстояния (из одного отдела центральной нервной системы в другой, от периферии к центру, от центров к исполнительному органу).

Это крупные, афферентные и эфферентные нейроны, имеющие на своем теле и отростках большое количество синапсов, как возбуждающих, так и тормозящих, и способные к сложным процессам переработки поступающих через них влиянии;

2) клетки, обеспечивающие межнейроальные связи в пределах ограниченных нервных структур (промежуточные нейроны спинного мозга, коры больших полушарий и др.).

Это мелкие клетки, воспринимающие нервные влияния только через возбуждающие синапсы. Эти клетки не способны к сложным процессам интеграции локальных синаптических влияний потенциалов, они служат передатчиками возбуждающих или тормозящих влияний на другие нервные клетки.

4.1. Воспринимающая функция нейрона, Ответом нейронов на внешнее раздражение является изменение величины, мембранного потенциала.

(аксодендритические синапсы)

шипиковидных выростах,

Чем сложнее интегративная функция нейрона, тем большее развитие имеют аксодендритические синапсы (в первую очередь те, которые расположены на шипиках).

Особенно они характерны для нейрональных связей пирамидных клеток в коре больших полушарий. Промежуточные нейроны (например, звездчатые клетки коры), таких шипиков лишены.

синоптических пузырьков

активных,

Эффекты, возникающие при активации синапса, могут быть возбуждающими или тормозящими. Это зависит от качества медиатора и свойств постсинаптической мембраны. Возбуждающие нейроны выделяют возбуждающий медиатор, а тормозные — тормозной. Кроме того, один и тот же медиатор может оказывать различное воздействие в разных органах (например: ацетилхолин возбуждает скелетные мышечные волокна и тормозит сердечные).

9 стр., 4143 слов

Строение и функции нервной ткани

... т. д.). Строение и функции мембран нейронов Возбудимость как специализированное свойство отдельных клеток организма обусловлено наличием у ... усиливать ее эффективность. Другие виды классификаций нейронов. Нервные клетки разных отделов нервной системы могут быть активными вне ... параметрах стимула кодируется нейроном-детектором в виде потенциалов действия. В настоящее время нейроны-детекторы выявлены ...

поляризована:

деполяризацию.

тормозных

4.2. Интегративная функция нейрона

Общее изменение мембранного потенциала нейрона является результатом сложного взаимодействия (интеграции) местных ВПСП и ТПСП всех многочисленных активированных синапсов на теле и дендритах клетки. На мембране нейрона происходит процесс алгебраического суммирования положительных и отрицательных колебаний потенциала. При одновременной активации нескольких возбуждающих синапсов общий ВПСП нейрона представляет собой сумму отдельных местных ВПСП каждого синапса. При одновременном возникновении двух различных синаптических влияний — ВПСП и ТПСП — происходит взаимное вычитание их эффектов. В конечном итоге реакция нервной клетки определяется суммой всех синаптических влияний. Преобладание тормозных синаптических воздействий приводит к гиперполяризации мембраны и торможению деятельности клетки. При сдвиге мембранного потенциала в сторону деполяризации повышается возбудимость клетки. Ответный разряд нейрона возникает лишь тогда, когда изменения мембранного потенциала достигают порогового значения — критического уровня деполяризации.

В крупных (афферентных и эфферентных) нейронах возбудимость различных участков мембраны неодинакова. В области начального сегмента нервной клетки (аксонного холмика и начальной немиелинизированной части аксона) имеется низкопороговая зона, мембрана которой обладает в несколько раз более высокой возбудимостью, чем на других участках клетки (порог возбудимости мембраны начального сегмента равен 10 мВ, а порог возбудимости соматодендритической мембраны -20 -30 мВ).

В этой зоне с момента достижения критического уровня деполяризации начинается лавинообразное вхождение натрия в клетку и регистрируется потенциал действия (ПД).

В ПД различают кратковременную высоковольтную часть, или спайк (пик), и длительные низкоамплитудные колебания — следовые потенциалы. ПД мотонейронов имеют амплитуду пика около 80 — 100 мВ и длительность его около 1,5 мсек.

4.3. Эффекторная функция нейрона

эффекторная функция нейрона.

Заключение

Процессы, происходящие в активном нейроне, можно представить в виде следующей цепи:

  • потенциал действия в пресинаптическом окончании предыдущего нейрона =>
  • выделение медиатора в синаптическую щель =>
  • увеличение проницаемости постсинаптической мембраны =>
  • ее деполяризация (ВПСП) или гиперполяризация (ТПСП) =>
  • взаимодействие ВПСП и ТПСП на мембране сомы и дендритов нейрона =>
  • сдвиг мембранного потенциала в случае преобладания возбуждающих влияний =>
  • достижение критического уровня деполяризации =>
  • возникновение потенциала действия в низкопороговой зоне (мембране начального сегмента) нейрона = > распространение потенциала действия вдоль по аксону (процесс проведения нервного импульса) =>
  • выделение медиатора в окончаниях аксона (передача нервного процесса на следующий нейрон или на рабочий орган).
    6 стр., 2835 слов

    Физиологические свойства нервных центров

    ... и центров спинного мозга, иннервирующих дыхательные мышцы. Физиологические свойства нервных центров определяют характер ответных реакций. Эти свойства в значительной мере связаны с особенностями проведения нервных импульсов через синапсы, соединяющие различные нервные клетки. 2. ...

Таким образом, передача информации в нервной системе происходит с помощью двух механизмов — электрического (ВПСП, ТПСП, потенциалы действия) и химического (медиаторы).

Список литературы:

[Электронный ресурс]//URL: https://psychoexpert.ru/referat/stroenie-nervnoy-kletki/

1. Данилова Н.Н., Крылова А.Л. Физиология высшей нервной деятельности: Учебник. М.: Учебная литература, 1997. — 432 с.

2. Смирнов В.М., Яковлев В.Н. Физиология центральной нервной системы: Учебное пособие. М: «Академия», 2004. — 352с.

3. Россолимо Т.Е., Москвина-Тарханова И.А., Рыбалов Л.Б. Физиология центральной нервной системы и сенсорных систем. Хрестоматия. М.: НПО «МОДЭК», 1999г. — 576с.

4. Свободная энциклопедия ВикипедиЯ — https://ru.wikipedia.org/wiki/%D0%97%D0%B0%D0%B3%D0%BB%D0%B0%D0%B2%D0%BD%D0%B0%D1%8F_%D1%81%D1%82%D1%80%D0%B0%D0%BD%D0%B8%D1%86%D0%B0