Современная модель эволюции Вселенной

Реферат

История окружающего нас мира, история Вселенной — вопрос, волновавший человечество, с самых ранних этапов познания. Мифы и религиозные учения предполагают свои собственные «космологические системы», свои теории эволюции Вселенной.

Эволюция Вселенной, начиная с Большого взрыва, рассматривается как совместное развитие микро и макро явлений, включая процессы дифференциации и усложнения в микро и макро ветвях эволюции.

Наша Вселенная участвует в закономерном эволюционном процессе.

Но было бы ошибкой отождествлять процесс эволюции Вселенной, как и любой другой материальной системы, только с одной прогрессивной ветвью развития. Развитие всегда состоит из двух ветвей или стадий: прогрессивной и регрессивной, которые объединяет общая черта — необратимость происходящих в них изменений.

Состояние вещества и ход физических про­цессов, сами понятия о времени и пространст­ве в “ранний” период эволюции Вселенной, когда плотность была грандиозна, еще недо­статочно ясны и, вероятно, существенно отли­чаются от понятий физики сегодняшнего дня.

Но качественные изменения во Вселенной произошли не только в далеком прошлом. Существуют теоретические гипотезы, что при определенных условиях эволюция звезд приводит к образованию так называемых «черных дыр”. Гравитационное поле на поверхности этих дыр настолько велико, что силы гравитации «цепляют» все виды лучистой энергии, включая свет, в эту часть пространства. Поэтому эти массивные звезды становятся невидимыми, если на них не падает материя извне. Однако выяснение того, как обнаружить «черные дыры», — одна из самых интересных задач современной астрофизики.

Вселенная — это материальный мир, рассматриваемый с точки зрения его астрономических аспектов. Существуют разные модели Вселенной: «Вселенная Эйнштейна», «Вселенная Фридмана», «Вселенная Леметра», «Вселенная Наана», «Вселенная Зельманова», соответствующие разным представлениям о ней в целом.

Современная картина эволюционирующей Вселенной – не только расширяющейся, но и буквально “взрывающейся”, — пожалуй, так же мало похожа на картину статичной Вселенной, которую рисовала астрономия начала XX в., как современные представления о взаимопревращаемости атомов и элементарных частиц на неделимые атомы классической физики.

Научная постановка вопроса истории Вселенной — одно из важнейших достижений современной науки. Астрономия использует наблюдения с помощью телескопов, изучает спектры далеких небесных тел, изучает радиоволны, приходящие из самых далеких регионов. Выводы этих наблюдений сделаны с учетом законов природы, изученных в наземных лабораториях. Мы используем данные о спектрах атомов, законах излучения и распространения радиоволн. Мы применяем теорию всемирного тяготения, экспериментируемую в земных условиях и в Солнечной системе, в частности, при движении искусственных космических кораблей, ко Вселенной и огромным скоплениям звезд.

8 стр., 3849 слов

Теории происхождения Вселенной

... повторяют друг друга. Кроме различных концепций о происхождении Вселенной существуют также религиозные и научные датировки ... в уменьшении частот излучения, что доказывает удаление звезд и галактик друг от друга вообще, ... ни один закон физики, а все, из чего на данный момент состоит Вселенная, заключалось в ... такие показатели, как пространство и время. По их мнению, эти параметры также появились ...

Великое достижение нашего века — это утверждение факта эволюции, изменяющейся Вселенной. Звезды расходуют свой запас горючего — водорода. Горение здесь заключается в превращении водорода в гелий посредством ядерных реакций. Удаляются друг от друга огромные скопления звезд. Частью такого скопления является и наша Галактика с ее 100 тыс. млн. звезд. нужно только помнить, что ни сама Земля, ни Солнечная система, ни Галактика не расширяются.

Новое, открытое в 1965 г. излучение объ­ясняется тем, что много миллиардов лет на­зад вся Вселенная была совершенно не похо­жа на современную. Все пространство было заполнено тем, что физики называют плазмой, горячим газом, состоящим из электронов, ядер водорода и гелия и излучения. Частицы из­лучения при этом даже преобладали. Вселенная расширялась, и в ходе этого расширения происходило постепенное изменение, охлаждение плазмы. Радиоволны, которые мы видим сегодня, являются потомками горячего излучения прошлого. Этот вывод подтверждается и спектром радиоволн: теория позволяет правильно прогнозировать волновые потоки в разных диапазонах.

С охлаждением связано и выделение от­дельных небесных тел. Всем известно, что при охлаждении горячего воздуха образуется туман: водяной пар, содержащийся в воздухе, превращается в капли воды. Нечто подобное происходит с охлаждением и с плазмой: электроны и ядра объединяются в атомы, атомы объединяются в облака газа, затем эти облака распадаются на отдельные звезды. Часть вещества и сейчас остается в форме газа.

Детальное теоретическое изучение образования галактик и звезд — одна из центральных задач астрофизики.

Познание Вселенной человеком

Первоначально небеса изображались весьма похожими на земной мир.

Ежедневные наблюдения также говорили, что Земля неподвижна и, кроме земного мира, ничего не может существовать.

Изо дня в день, из года в год на опыте люди убеждались, что солнце, луна, планеты и звезды движутся по небу, восходят на востоке и заходят на западе.

Историки античного мира говорят, что уровень древней астрономии был очень высоким. Это верно. Но мы не должны забывать, что астрономия в то время была чисто описательной наукой, не способной ничего противопоставить религиозным представлениям об устройстве мира. Истинная природа изучаемых ею явлений была полностью скрыта от нее.

Поэтому размышления древних о природе неба в основном основывались на догадках, покрытых фантастическими, часто религиозными образами.

Древнегреческий математик Пифагор (VI в. до н. э.), много путешествовавший, первым высказал мысль о шарообразности Земли. Философ Аристотель (IV в. до н. э.) доказывал, что Земля — шар, ибо в южных странах на небе появляются новые соз­вездия, невидимые в северных, а чем дальше мы двигаемся к северу, тем все больше появляется на небосводе незаходящих звезд.

5 стр., 2159 слов

Теории происхождения жизни на Земле

... происхождения жизни, основанный на идее первичности структур, наделённых способностью к элементарному обмену веществ при участии ферментного механизма. Теория Опарина – Холдейна самопроизвольно Согласно его теории процесс, приведший к возникновению жизни на Земле, ... а тем более для передачи коацерватам-потомкам? Теория оказалась ... Мир РНК как предшественник современной жизни К XXI веку теория ...

Постепенно идея, что Земля — ​​это шар, подвешенный в космосе и ни на чем не основанный, стала все более распространенной среди древних мыслителей.

Так шаг за шагом двигались люди к разгадке тайны мироздания. Однако на этом пути у них были два серьезных препятствия. Во-первых, у людей не было необходимых инструментов для наблюдения за небесными телами. Во-вторых, развитие древней науки было приостановлено на многие столетия утверждением христианства.

В древнегреческой философии также возникла тенденция, резко противоположная небесному и земному. В то время как великий материалист древности Демокрит (V — IV в. до н. э.) развенчивал веру в богов и отрицал божественность небесных светил, Платон (V — IV в. до н. э.) философ-идеалист, говорил, что астрономия изучает на небе идеальный мир, соответствующий достоинствам обитающих там бо­гов. Все небесное, по учению Платона, вечно и неизменно. Это представление поддерживал и ученик Платона Аристотель. Он считал, что земной мир состоит из четырех элементов: огня, воздуха, воды и земли.

Представления Платона и Аристотеля оказали сильное влияние на картину мира, созданную греческим астрономом Птолемеем во II веке до нашей эры. Птолемей пытался объяснить видимые движения на небе планет Солнечной системы: Венеры, Марса, Юпитера, Сатурна. Птолемей считал, что Земля находится в центре мира и не может двигаться. Поэтому он придумал сложную схему, согласно которой Солнце находится на третьем месте от Земли, а все планеты движутся не только вокруг Земли, но и по дополнительным орбитам, объясняющим видимые пути планет на Земле и небо.

Система Птолемея легла в основу христианской космологии. По учению христианской церкви, человек — царь природы. Ради него созданы Земля и Солнце, небеса и преисподняя.

Так выглядело небо в годы господства христианской веры.

Таким образом, рассматриваемые фазы человеческих представлений о Земле и Вселенной представляли собой смесь наблюдений и предположений. Небесный мир строился поэтому или по прямой аналогии с земным или в прямом противопоставлении ему.

Но наука не может полагаться только на здравый смысл, который ограничен структурой распорядка дня. Он утверждает, что мир бесконечен по своим масштабам и свойствам, и то, что оказывается бесспорно правильным в земном мире вокруг человека, неприменимо в мире мельчайших частиц материи — молекул и атомов или в мире бесконечно удаленных большие космические тела — звезды и галактики. По словам ученых, наблюдение и опыт, научные эксперименты и, в конечном итоге, социальная и производственная практика — единственные надежные средства отличить истину от ошибки. Только эти средства могут подтвердить или опровергнуть дерзкие предположения человеческого разума.

Система Птолемея была поставлена под сомнение польским математиком и аст­рономом Николаем Коперником (1473-1543).

Выдающийся мыслитель, Николай Коперник в течение более чем 30 лет разра­батывал идею гелиоцентрической картины мира (от греческого “гелиос” — солнце), в соответствии с которой Земля оказывается рядовой планетой, в числе прочих об­ращающейся вокруг центрального светила — Солнца. Коперник решительно отверг старые предрассудки о том, что Земля — ​​это центр мира и центр тяжести, вокруг которого должны двигаться все звезды.

3 стр., 1357 слов

Геоцентрическая система мира

... для тяжёлых тел является центр Вселенной; как показывает опыт, все тяжёлые тела падают отвесно, а поскольку они движутся к центру мира, Земля находится в центре. Кроме того, ... религия Уже одна из первых идей, оппозиционных геоцентризму (гелиоцентрическая гипотеза Аристарха Самосского) привела к реакции со стороны представителей религиозной философии: стоик Клеанф призвал привлечь Аристарха к ...

Коперник утверждал, что не Вселенная движется вокруг неподвижной Земли, а, наоборот, Земля движется в космосе.

Но идеи Коперника поначалу были лишь гипотезой, не подтвержденной фактами. Ведь в XVI веке астрономия не обладала приборами, способными помочь человеку постичь природу небесных тел. Все известные в то время астрономические инструменты были важны для наблюдательной астрономии, они помогали изучать видимые движения и положение звезд и планет на небе. Эти наблюдения в конечном итоге также сыграли роль в создании истинной картины мира, но они не могли рассказать людям о структуре, размере небесных тел и масштабе Вселенной.

Гипотеза Коперника противоречила христианскому учению о месте человека в мире. Она подрывала ту древнюю картину Вселенной, которая была закреплена в “священном писании” (Библии).

Прежде всего, оказалось, что небеса состоят из таких же материальных объектов, как и Земля: на Луне обнаружились горы, “моря” и долины; на Солнце — пятна; Млечный Путь распался на бесчис­ленное множество отдельных звезд и т. д.

Также было обнаружено, что теория гравитации всех небесных тел в центре мира — Земле — также неверна. Уже при первых наблюдениях Галилей (1564-1642) обнаружил, что вокруг плане­ты Юпитер движутся четыре спутника и что, следовательно, во Вселенной помимо Земли могут быть другие центры притяжения.

Наблюдения за Венерой показали, что она, как и Луна, проходит через смену видимых фаз, приобретая вид узкого серпа или твердого диска. Это было прямым доказательством ее обращения вокруг Солнца.

Таким образом, за несколько месяцев под ударами новых фактов рухнула вся средневековая картина мира. Неудивительно, что Галилея, совершившего этот научный подвиг, современники прозвали Колумбом Вселенной.

Вплоть до начала нынешнего столетия в науке гос­подствовала возникшая в Новое время ньютоновско-картезианская парадигма — система мышления, основанная на идеях И. Ньютона и Р. Декарта.

В учениях Декарта и Ньютона упущен очень важный момент: фигура Бога. Рационально-механистический образ мира, сформированный в трудах последователей, показывает нам мир как один-единственный: мир твердой материи, подчиненный строгим законам. Сам по себе он лишен духа, свободы, благодати, он безмолвен и слеп. Осознаваемая реальность — гигантские космические пространства, в которых массы материи движутся по четким траекториям — не нуждается в появлении человека и сознания. Человек в этом мире — ошибка, описка, курьезный слу­чай. Он — побочный продукт звездной эволю­ции. Лишенная Бога и сознания, Вселенная не живет, а существует без смысла и цели, более того, любое значение для нее — бесполезная роскошь, разрушаемая под действием закона энтропии.

Механистическая вселенная Ньютона состоит из атомов, маленьких неделимых частиц постоянной формы и массы, связанных загадочным законом всемирного тяготения. он организован в трехмерном пространстве классической евклидовой геометрии. Это пространство аб­солютно, постоянно и всегда находится в покое. это большой сосуд тел, сам по себе совершенно не зависящий от них, а только дающий им возможность перемещаться под действием силы тяжести. Точно так же время — это чистая продолжительность, оно абсолютно автономно и не зависит от материального мира. Он течет равномерным и неизменным потоком из прошлого через настоящее в будущее. В целом Вселенная представляет собой огромный, полностью детерминированный механизм, в котором действует непрерывная цепочка взаимосвязанных причин и следствий. Если бы было возможно получить точную информацию о каждом звене в этой цепочке, можно было бы точно реконструировать любую ситуацию из прошлого и безошибочно спрогнозировать будущие события.

5 стр., 2064 слов

Человек в современном мире

... обывательской философии, что планеты и звезды видимого мира – это только молекулы какого-то большого тела, ничтожную часть которого составляет наша Вселенная... "Может быть, вся Вселенная лежит в мизинце ... то ноуменально. И, следовательно, мы не будем в состоянии определить функции и значения человека в ином разрезе мира, чем мир геометрии Эвклида, единственно доступный "прямым методам ...

Вселенная, представленная как комплекс механических систем, развивается без участия какого-либо сознания и разума. Вся его история, от Большого взрыва до наших дней, является результатом слепого и спонтанного движения материальных масс. Жизнь возникает в первобытном океане случайно, в результате случайных химических реакций, и если бы процесс пошел немного иначе, сознание никогда бы не проявилось в бытии. С физикалистской точки зрения возникновение жизни и сознания — это не только загадка, но и довольно странное и абсурдное явление, поскольку оно противоречит второму закону термодинамики, согласно которому каждая сложная система постоянно стремится стать простой., но не наоборот.

Предполагая, что человек — случайность, механистическая наука не интересуется его судьбой, его целями и ценностями, которые кажутся нелепой чепухой, мгновенной вспышкой сознания в грандиозной машине бессмысленной Вселенной. Субъективное перемалывается жерновами объективного. Мир выглядит как нечеловекоразмерный, бесстрастно уничтожающий все человеческое, да и просто не замечающий его.

В начале XX в. был сделан целый ряд открытий, в корне изменивших видение мира современным естествознанием. Теория относительности А. Это показали Эйнштейн, эксперименты Резерфорда с альфа-частицами, работы Нильса Бора, исследования в области химии, биологии, психологии и других наук. что мир гораздо разнообразнее, сложнее, чем это представ­лялось механистической науке, и что сознание человека из­начально включено в само наше восприятие действительно­сти.

Согласно теории относительности, пространство не трехмерно, а время нелинейно. И то, и другое не являются отдельными самостоятельными сущностями. Они тесно переплетены и образуют пространственно-временной континуум. Течение времени неоднородно и неоднородно, оно зависит от положения наблюдателя и его скорости по отношению к наблюдаемому событию. Кроме того, в общей теории относительности речь идет о том, что пространство и время находятся в тесной связи с массой тел: возле гигант­ских космических тел пространство способно искривляться, а время — замедляться.

Нобелевский лауреат Илья Пригожин положил начало новому принципу ос­мысления действительности. В свете этого принципа, признающего за Вселенной первич­ную динамическую неопределенность, оказалось возмож­ным выработать новое понимание эволюции. Второй закон термодинамики не всесилен, ибо все существующие системы имеют прирожденную способность мутировать в направле­нии большей сложности. Одна и та же энергия, одни и те же принципы обеспечивают эволюцию на всех уровнях: от физико-химических процессов до человеческого сознания и социокультурной информации. Вселенная оказывается еди­ной во всех своих пластах, живой, развивающейся, восхо­дящей на новые ступени бытия.

13 стр., 6322 слов

Мы дети галактики

... Вселенной, опровергнув популярные в ту пору взгляды о равномерном распределении звезд в бесконечном пространстве. Следующий, весьма важный вклад в изучение Галактики ... некоторыми быстропротекающими космическими процессами типа ... были, как мы теперь знаем, ... Галактике. Планета Земля принадлежит Солнечной системе, которая состоит из единственной звезды – Солнца и девяти планет с их спутниками, тысяч ...

На базе подходов, отбросивших старые представления, возникают радикалистские взгляды. Вселенная — это бесконечная сеть взаимо­связанных событий. Они как зеркала, отражающиеся друг в друге, как живой клубок, где одно непрерывно перетекает в другое. Все теории естествознания — лишь создания чело­веческого разума, только версии бытия.

Современные естествоиспытатели все более обращаются к опыту индуизма, буддизма, даосизма, к оккультным учениям, усматривающим в основе мироздания творческое сознание. Человек, таким образом, перестает быть обмолвкой природы, а становится законным проявлением внутренних потенций действительности. Одна из его главных задач — познание соб­ственного места в бытии и понимание того, что вся Вселенная пронизана токами разума, наполнена смыслом.

Как раскрывают тайны Вселенной

Научное исследование природы человеком никак не могло ограничиться простым созерцанием окружающего мира и отвлеченными логическими рассуждениями о его возможном устройстве. Чтобы открыть закономерности тех или иных явлений, изучить строение природных объектов, людям необходимы были, прежде всего, наблюдения и опыты.

Первый, начальный этап любого исследования — наблюдение, второй, наиболее действенный способ — эксперимент.

Неудивительно поэтому, что познание человеком окружающего мира началось с изучения тех объектов и явлений, которые он мог непосредственно наблюдать, осязать, с которыми он сталкивался в своей повседневной жизни, в производствен­ной практике.

Что же касается внутренней сущности явлений, глубоких закономерностей, лежащих в их основе, то люди задумывались об этом еще в глубокой древности, но в те времена они могли высказывать на этот счет в большинстве случаев лишь чисто умозрительные догадки. И лишь на определенном этапе своего развития наука получила возможность изучать не только то, что лежит на поверхности, но и то, что скрыто от непосредственного наблюдения.

Важнейшим поворотным этапом в развитии науки, с которого, по существу, началось научное исследование природы, явилось, как уже было сказано, учение поль­ского астронома Николая Коперника.

Заслуга Коперника состояла не только в том, что он создал гелиоцентрическое учение о строении мира, но и в том, что вместо принципа “Мир таков, каким мы его наблюдаем” он утвердил в естествознании иное положение: “Мир не таков, каким он нам кажется”. И задача естествознания в том и состоит, чтобы вскрывать эту внутреннюю природу явлений.

Когда наука проникла в мир атома, в мир микропроцессов, она столкнулась с целым рядом “странных”, “диковинных” явлений, но так и должно быть.

И нет ничего поразительного в том, что поиск этих закономерностей идет не толь­ко в земных физических лабораториях, но и в лаборатории космоса. Ведь, в конечном счете, любой космический объект, какими бы гигантскими масштабами он ни обладал, состоит из элементарных частиц. Поэтому физика и астрономия тесно связаны между собой. Но если в физике основным средством познания является эксперимент, то астрономия — наблюдательная наука, что неизбежно затрудняет изучение космиче­ских процессов и объектов.

Все сведения о космических объектах приносят на Землю различные излучения -электромагнитные волны и потоки корпускул — частиц вещества. Свойства таких излучений зависят от характера физических процессов, которые их породили. Иссле­дуя эти свойства, астроном может многое узнать о природе явлений, которые проис­ходят в глубинах Вселенной.

6 стр., 2971 слов

Человек во вселенной

... Вселенной не удавалось объяснить происхождение скоплений галактик. Исходя из раз­личных моделей гравитационной неустойчивости, можно было объяснить происхождение отдельных звезд и планетных систем, но не скоплений галактик. ... Солнца, звездных суток и звездного времени. Секунда — общепринятая единица времени, примерно с пери­одом 1 с бьется пульс человека. ... 235 (19 лет) и по 940 (около 76 лет) лунных ...

Первым вестником далеких миров был световой луч. Да и по сей день наиболь­шее количество сведений о космических процессах приносит свет. Поэтому основа основ астрономии, ее неизменный фундамент — изучение космических световых лучей…

Космос, галактики, звезды

В ясную погоду можно насчитать на небосводе до трех тысяч звезд. Но это лишь очень небольшая часть тех звезд и других космических объектов, которые существуют в нашей области мира…

В безлунные ночи хорошо виден Млечный Путь, протянувшийся от одной сторо­ны горизонта до другой. Он кажется скоплением светящихся туманных масс. Но сто­ит направить на Млечный Путь телескоп, и мы сразу обнаружим, что он состоит из множества звезд. Эта звездная система, к которой принадлежит и наше Солнце, по­лучила название Галактики

Изучать нашу Галактику необычайно сложно. Это одна из труднейших задач науки. Ведь мы находимся внутри этой Галактики и не можем ни вылететь за ее пределы, ни побывать в различных ее точках. Тем не менее, наука преодолевает эти трудности.

И сегодня мы уже достаточно уверенно можем говорить о том, как же выглядит наш звездный остров. В центре его находится ядро, окруженное множеством звезд. От него отходит несколько могучих спиральных ветвей…

Наша Галактика столь ве­лика, что ее размеры нелегко себе представить: от одного ее края до другого свето­вой луч путешествует около 100 тысяч земных лет.

Большая часть звезд нашей Галактики сосредоточена в гигантском “диске” толщиной около 1500 световых лет. На расстоянии около 30 тысяч световых лет от центра Галактики расположено наше Солнце.

Основное “население” Галактики — звезды . Мир этих небесных тел необыкновен­но разнообразен. И хотя все звезды — раскаленные шары, подобные Солнцу, их физи­ческие характеристики различаются весьма существенно. Есть, например, звезды гиганты и сверхгиганты. По своей величине они значительно превосходят Солнце.

Еще большей плотностью обладают так называемые нейтронные звезды. Нейтронная звезда — это громадное атомное ядро. Существование нейтронных звёзд было теоретически предсказано еще в 30-х годах. Однако обнаружить их удалось только в 1967 году по необычному импульс­ному радиоизлучению.

Звезды обладают различными поверхностными температурами — от несколь­ких тысяч до десятков тысяч градусов. Различен и цвет звезд. Срав­нительно “холодные” звезды — с температурой около 3-4 тыс. градусов — красно­ватого цвета. Наше Солнце, поверхность которого “нагрета” до 6 тысяч градусов, обладает желто-зеленым цветом. Самые горячие звезды — с температурой, превосходя­щей 10 — 12 тысяч градусов, — белые и голубоватые.

Температура поверхности Солнца составляет около 6000 C 0 .

Звезды обычно кажутся нам неподвижными. Но это лишь видимость. Так, нам кажется, что Солнце движется по небу относительно неподвижной Земли, а на самом деле наша планета вращается вокруг дневного светила. Нам кажется, что Солнце и Луна имеют примерно одинаковые размеры, а в действительности Солнце во много раз больше естественного спутника Земли, но расположено гораздо дальше Луны…

17 стр., 8407 слов

Планета юпитер реферат для детей

... собрав 2/3 массы планет Солнечной системы, Юпитеру не хватило этого для того, чтобы в центре планеты начались термоядерные реакции: планета в 80 раз легче самой маленькой звезды главной последовательности. Однако ... 46 тыс. километров от центра Юпитера давление достигает 3 млн. атмосфер, температура – 11 тыс. градусов. (Напомним, что температура поверхности Солнца около 6 тыс. градусов.) Водород не ...

Движутся и звезды. Но для того чтобы заметить их перемещение, надо сравнивать положение звезд на небе через достаточно длительные промежутки времени, например через десятки лет.

Один из самых грандиозных физических процессов во Вселенной — вспышки так называемых новых и сверхновых звезд. В дей­ствительности звезда существует и до вспышки. Но в какой-то момент под действием бурных физических процессов такая звезда неожиданно увеличивается в объеме, “раздувается”, сбрасывает свою газовую оболочку и в течение нескольких суток выделяет чудовищную энергию, светя, как миллиарды солнц. Затем, исчерпав свои ресурсы, эта звезда постепенно тускнеет, а на месте вспышки остается газовая ту­манность.

Наше Солнце – “одинокая” звезда. Она лишена подобных себе горячих спутни­ков. Но во Вселенной есть двойные, тройные и более сложные звездные системы, члены которых связаны друг с другом силами взаимного притяжения и обращаются вокруг общего центра масс. Некоторые скопления содержат десятки, сотни и тысячи звезд. А число звезд в больших шаровых скоплениях достигает даже сотен тысяч.

Межзвездное пространство тоже не пусто. Оно заполнено газовыми и пылевыми частицами, которые в некоторых местах образуют гигантские облака — туманности, светлые и темные.

Звезды, составляющие Галактику, движутся вокруг ее центра по очень сложным орбитам. С огромной скоростью — около 250 км/сек. несется в ми­ровом пространстве и наше Солнце, увлекая за собой свои планеты. Солнечная систе­ма совершает один полный оборот вокруг галактического центра за 180 млн. лет.

Ближайшие к нашей Галактике звездные системы удалены от нас на расстояние около 150 тыс. световых лет. Они видны на небе Южного полушария как малень­кие туманные пятнышки.

Наша Галактика и другие соседние звезд­ные системы образуют Местную систему галактик . В ее состав входит 16 галактик, а поперечник ее равен 2 млн. световых лет. Исследования показывают, что звездные острова, галактики — типичные объекты Вселенной. Астро­номам теперь известно великое множество галактик во всех участках небесной сферы.

Галактики имеют разнообразную форму и строение. Есть галактики шаровые и эллиптические, галактики в форме диска, спиралевидные, подобно нашей, наконец, галактики неправильной формы. В области, доступной современным средствам астрономических исследований, насчитываются миллиарды галактик. Их совокупность ученые назвали Метагалактикой.

Вселен­ная — это вовсе не простая совокупность небесных тел, в ней постоянно происходят чрезвычайно сложные и многообразные физические процессы.

И именно с этой точки зрения изучение Вселенной представляет наибольший интерес для современного естествознания. Космос — бесконечно разнообразная ла­боратория, где можно изучать такие состояния материи, такие физические условия и процессы, которые недостижимы у нас на Земле.

Стремительный прогресс науки и техники в период научно — технической револю­ции, современниками которой мы являемся, ведет ко все новым и новым открыти­ям, все более глубокому проникновению в самые сокровенные тайны природы, к дальнейшему познанию фундаментальных законов мироздания. И Вселенная в наше время становится все более важным источником уникальной информации о явлениях природы.

6 стр., 2733 слов

Строение земли для детей

... вещества. 4 1. История земли Земля - это третья от Солнца планета Солнечной системы. Она обращается ... охраны природы. Широко известная модель внутреннего строения Земли (деление ее на ядро, мантию и ... не показывает выдержанной в пространстве астеносферы. Для многих областей выявлены несколько астеносферных ... минимальная - около -900 С (в центральных районах Антарктиды). Образование Земли и начальный ...

Галактики разбегаются от нас во всех направлениях и, чем дальше находится та или иная галактика, тем с большей скоростью она движется. Происходит общее расширение Метагалактики , которое совершается таким образом, что скорость взаимного удаления двух звездных систем тем выше, чем больше расстояние между ними.

Картину взаимного разбегания галактик можно мысленно повернуть вспять, и тогда мы придем к выводу, что в отдаленном прошлом, около 15-20 миллиардов лет назад, материя находилась в ином состоянии, нежели в нашу эпоху. Тогда не было еще ни звезд, ни планет, ни туманностей, ни галактик. Вся материя была сосредоточе­на в очень плотном компактном сгустке горячей плазмы — смеси элементарных частиц вещества и излучения. Затем произошел взрыв этого сгустка и началось его расширение, в процессе которого образовались сначала атомы, а затем звезды, галак­тики и все другие космические объекты.

Так возникла теория расширяющейся Вселенной одна из наиболее впечатляю­щих научных теорий XX столетия. Представления о неизменной, стационарной Все­ленной уступили место новым представлениям о Вселенной, меняющейся с течением времени. Это был новый, чрезвычайно важный шаг в познании свойств окружающего нас мира. Дальнейшие исследования показали, что различные нестационарные явле­ния вообще играют важную роль в современной Вселенной.

Теория предсказывала, что, когда в процессе расширения температура среды упадет до нескольких тысяч градусов, она станет прозрачной для электромагнитных волн. Тогда электромагнитное излучение как бы “оторвется” от вещества и посте­пенно заполнит все пространство Вселенной. И действительно, в середине 60-х годов реликтовое излучение удалось зарегистрировать.

Исследование его физических свойств показало, что первоначальное вещество действительно обладало чрезвычайно высокой температурой. Тем самым было полу­чено наблюдательное подтверждение справедливости теории горячей расширяющей­ся Вселенной. Существование реликтового излучения — очень важное, решающее подтверждение того фундаментального факта, что мы, в самом деле, живем в расширяющейся Метагалактике.

Следовательно, Вселенная не всегда была такой, как в современную эпоху. Она изменяется с течением времени; ее прошлое не тождественно настоящему, а настоя­щее — будущему. Таким образом, когда-то нашей Вселенной вообще не существова­ло, хотя и тогда была материя, из которой она впоследствии образовалась. Материаль­ный мир вечен, а Вселенная — его часть, выделенная человеком. В процессе своей по­знавательной и практической деятельности человек выделяет, вычленяет из беско­нечно разнообразного материального мира определенные объекты, явления, связи, взаимодействия. Это как бы конечный “срез” бесконечно разнообразного мира — наша Вселенная, или, как ее иногда называют Вселенная естествоиспытателя.

Если в первой половине XX столетия астрофизики интересовались главным об­разом изучением тех свойств космических объектов, которые характеризуют их современное состояние, то в последние десятилетия астрофизика превратилась в эво­люционную науку, в центре внимания которой находятся закономерности происхож­дения и развития космических объектов.

Если мы будем знать закономерности эволюционных процессов, то сможем прогнозировать развитие космических явлений и будущие состояния космических объектов, исходя из их современных состояний. А это задача, имеющая не только чисто теоретическое, но и огромное практическое значение: ведь в физическом отноше­нии мы сами являемся частью Вселенной и наше существование тесно связано с “космической обстановкой”.

В современ­ной астрофизике существуют две основные концепции по возникновению и развитию космических объектов. Одна из них, наиболее распространенная, — ее часто называют “классической” — исходит из того, что космические объекты образуются в результате сгущения конденсации рассеянного диффузного вещества — газа и пыли. Согласно другой концепции, разви­ваемой известным советским ученым академиком В. А. Амбарцумяном, космичес­кие объекты возникают в результате распада на части, фрагментации плотных или сверхплотных “прототел”, сгустков “дозвездного” вещества. Какая из этих гипотез более справедлива — покажут будущие исследования.

квазаров.

Оказывается, чем дальше от нас находится тот или иной космический объект, тем в более отдаленном прошлом мы его наблюдаем. Это связано с конечной скоростью распространения света. Хотя она и составляет 300 тысяч км/сек. даже при такой огромной скорости для преодоле­ния космических расстояний необходимы долгие годы, десятки, сотни, миллионы и миллиарды лет. Поэтому, глядя на небо, мы видим космические объекты — Солнце, планеты, звезды, галактики в прошлом. Причем различные объекты — в разном прошлом. Например, Полярную звезду — такой, какой она была около шести веков назад.

Все это говорит о том, что излучение квазаров и активность ядер галактик связа­ны со сходными физическими процессами. Однако вопрос о природе этих процессов все еще остается открытым.

Еще один очень интересный вопрос, связанный с изучением Вселенной, — геометрические свойства пространства, его конечность или бесконечность . Эту проб­лему пытались решить еще великие философы древности.

В прошлом понятие Вселенной отождествлялось с понятием материального мира. И когда речь шла о конечности или бесконечности Вселенной, то фактически рассматривался вопрос о конечности или бесконечности материальною мира.

На протяжении истории науки представления о геометрических свойствах про­странства менялись не раз. Аристотель и Птолемей ограничивали мир “сферой непод­вижных звезд”, классическая физика Ньютона, наоборот, приходила к выводу о бес­конечности мирового пространства. И лишь с возникновением теории относитель­ности А. Эйнштейна появилась возможность более глубоко разобраться в существе этой проблемы. Если физика Ньютона рассматривала пространство как простое вме­стилище небесных тел, то А. Эйнштейну удалось вскрыть тесную связь между гео­метрией пространства и материей.

Таким образом, пространство, в котором мы живем, искривлено. А в искрив­ленном мире “неограниченность” и “бесконечность” — не одно и то же. Оказывается, неограниченное пространство, то есть пространство, не имеющее “края”, гра­ницы, в то же время может быть конечным, как бы замкнутым в себе.

Что касается мирового пространства, то его неограниченность не вызывает сом­нения. Мир — это материя, а материя не может иметь границ в том смысле, что за материальным миром может располагаться нечто нематериальное. И это, разумеется, принципиальный философский вопрос — вопрос о материальном единстве мира.

Что же касается его конечности или бесконечности, то этот вопрос могут решить только конкретные науки — астрономия и физика.

Современные средства астрономических наблюдений — мощные телескопы и радиотелескопы — охватывают огромную область пространства радиусом около 12 миллиардов световых лет.

Развитие астрономии в XX веке выявило тесную взаимосвязь и взаимозависимость между существованием жизни на Земле и свойствами Вселенной. В физическом отношении человечество является частью Вселенной и подчиняется действующим в ней физическим и другим закономерностям. В частности, само возникновение жизни на Земле обусловлено всем ходом эволюции материи во Вселенной, эволюции, на определенном этапе которой сложились условия, сделавшие возможным образова­ние живых структур.

Таким образом, в широком смысле слова Вселенная является средой нашего обитания. Поэтому немаловажное значение для практической деятельности чело­вечества имеет то обстоятельство, что во Вселенной господствуют необратимые фи­зические процессы, что она изменяется с течением времени. Человек приступил к ос­воению космоса, наши свершения приобретают все больший размах, глобальные и даже космические масштабы. И для того, чтобы учесть их близкие и отдаленные последствия, те изменения, которые они могут внести в состояние среды нашего обитания, в том числе и космической, мы должны принимать во внимание не толь­ко земные процессы, но и закономерности космического масштаба.

Семья Солнца

Солнечная система — это, прежде всего звезда Солнце и девять планет, обращаю­щихся вокруг него. В порядке расстояний от светила, они располагаются следующим образом: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун и Плутон . Три последние планеты с Земли можно наблюдать только в телескопы. Остальные видны как более или менее яркие кружки и известны людям со времен глубокой древности.

Солнце служит центром притяжения не только для девяти больших планет, но и для десятков (а возможно, и сотен) тысяч различных космических тел: планетных спутников, астероидов, комет, а также метеоритов, частиц газопылевой материи, рассеянных атомов различных химических элементов, потоков атомных частиц и т. д.

Солнечная система, таким образом, весьма сложное образование, ряд закономер­ностей которого стал доступен для изучения лишь в последние десятилетия. Огромную роль в их исследовании приобретает сейчас космонавтика — наиболее мощное и перспективное средство познания Вселенной.

Один из центральных вопросов, связанных с изучением нашей планетной систе­мы, — проблема ее происхождения . Как возникла семья небесных тел, обращающих­ся вокруг Солнца? Ответ на этот вопрос имеет не только важное естественнонаучное, но и мировоззренческое, философское значение. На протяжении веков ученые пыта­лись выяснить прошлое, настоящее и будущее Вселенной. Нередко их представления были в той или иной степени связаны с господствовавшими религиозными воззрения­ми. Но еще в глубокой древности зародилась мысль, что мир не был создан никем из богов. Он всегда существовал и будет существовать. Одни миры возникают, раз­виваются, другие — разрушаются и умирают. Земля, как и другие миры, сформиро­валась в результате естественных причин.

Однако такие гениальные догадки настолько опережали эпоху, что не могли быть восприняты современниками. В споре о путях происхождения и развития Зем­ли и планет столкнулись два прямо противоположных и непримиримых суждения о том, что лежит в основе мироздания — дух или вечно существующая мате­рия? Создан ли мир богом, или он существует вечно?

В отличие от идеалистов, утверждающих первичность духа и считающих мир продуктом творения бога, материалисты признают первичность материи. Подтверждая свои выводы практикой исследований и наблюдений, осно­вываясь на повседневном опыте, материалисты доказывают, что все небесные тела, в том числе Земля и планеты, могли возникнуть лишь из других форм материи, то есть, сформировались естественным путем. В наше время все сколько-нибудь значительные космогонические гипотезы являются последовательно материа­листическими.

Важной закономерностью является то, что все планеты движутся вокруг Солнца в одном направлении, в единой плоскости (за исключением Плутона) и почти по круговым орбитам.

По своим физическим характеристи­кам планеты образуют две различные группы , отличающиеся размерами, плотностью, химическим составом планет. Одна из них состоит из сравнительно небольших планет земной группы — Меркурия, Венеры, Земли и Марса. Их вещество отличается высо­кой плотностью: в среднем около 5,5 г/см3 , что в 5,5 раза превосходит плотность воды. Другую группу составляют планеты-гиганты: Юпитер, Сатурн, Уран и Нептун. Эти планеты обладают огромными массами. Так, масса Урана равна 15 земным мас­сам, а Юпитера — 318. Все планеты этой группы сравнительно быстро вращаются вокруг своей оси. Сутки на Нептуне длятся, например, 15 часов 48 минут, а на Юпи­тере — всего 9 часов 50 минут. Состоят планеты — гиганты главным образом из водо­рода и гелия, а средняя плотность их вещества близка к плотности воды. Судя по всему, у этих планет нет твердой поверхности, подобной поверхности планет земной группы. Особое место занимает девятая планета — Плутон, — открытая в марте 1930 го­да. По своим размерам она ближе к планетам земной группы. Не так давно астроно­мам удалось обнаружить, что Плутон — двойная планета: она состоит из центрального тела и очень большого спутника. Оба небесных тела обращаются вокруг общего центра масс. Плутон необычен и в другом отношении. В то время как орбиты всех остальных планет лежат приблизительно в одной плоскости, плоскость орбиты Плутона наклонена к ней под уг­лом около 17 градусов.

Согласно современным представлениям, планеты Солнечной системы образова­лись из холодного газопылевого облака , окружавшего Солнце миллиарды лет назад. Наиболее последовательно такая точка зрения проведена в работах советского уче­ного академика О.Ю. Шмидта.

В основе теории О. Ю. Шмидта лежит мысль об образовании планет путем объе­динения твердых тел и пылевых частиц. Возникшее около Солнца газопылевое об­лако вначале состояло на 98% из водорода и гелия. Остальные элементы конденсировались в пылевые частицы. Однако беспорядочное движение газа в облаке быстро прекратилось: оно сменилось спокойным обращением облака вокруг Солнца.

Пылевые частицы сконцентрировались в центральной плоскости, образовав слой повышенной плотности. Когда плотность слоя достигла некоторого “крити­ческого“ значения, его собственное тяготение стало “соперничать” с тяготением Солнца. Слой пыли оказался неустойчивым и распался на отдельные пылевые сгуст­ки. Сталкиваясь друг с другом, они образовали множество сплошных плотных тел. Наиболее крупные из них приобрели почти круговые орбиты и в своем росте начали обгонять другие тела, став потенциальными зародышами будущих планет. Как более массивные тела, новообразования присоединили к себе оставшееся вещество газо­пылевого облака. В конце концов сформировалось девять больших планет, движение которых по орбитам остается устойчивым на протяжении миллиардов лет.

Таким образом, почти круговые орбиты планет явились результатом осредне­ния орбит тел, объединившихся в планеты. Деление планет на две группы связано с тем, что в далеких от Солнца частях облака температура была низкой и все веще­ства, кроме водорода и гелия, образовали твердые частицы. Среди них преоблада­ли метан, аммиак и вода, определившие состав Урана и Нептуна. В составе самых массивных планет — Юпитера и Сатурна, кроме того, оказалось значительное коли­чество газов. В области планет земной группы температура была значительно выше, и все летучие вещества (в том числе метан и аммиак) остались в газообразном состоянии и, следовательно, в состав планет не вошли. Планеты этой группы сфор­мировались в основном из силикатов и металлов.

Научная теория происхождения Солнечной системы подтверждается многочис­ленными наблюдениями. Однако сейчас еще нельзя сказать, что процесс об­разования планет досконально изучен.

Центральное тело нашей планетной системы — Солнце. Оно могучий ис­точник энергии: ежесекундно наше светило излучает такое количество тепла, кото­рого вполне хватило бы, чтобы растопить слой льда, окружающий земной шар, тол­щиной в тысячу километров.

Ученые давно задумывались над тем, каким образом Солнце восполняет запасы своей энергии, столь щедро излучаемой в мировое пространство. На первых порах наиболее естественным считалось предположение, что энергия нашего дневного светила не пополняется. Но в таком случае температура Солнца должна была бы заметно понижаться (по расчетам, на 2 процента в год), а следовательно, непрерывно уменьшалось бы количество тепла и света, получаемых Землей. Между тем измере­ния, проводившиеся на протяжении ряда лет на специальных горных станциях, говорят о том, что поток светового и теплового излучения Солнца практически не меняется. А это означает, что энергия нашего светила постоянно пополняется из какого-то источника.

В свое время высказывалось предположение, что таким источником может слу­жить непрерывное сжатие Солнца, происходящее под действием сил тяготения. Так действительно могло бы происходить, но тогда источника тепла и света хватило бы всего на 20 миллионов лет. Между тем геологические данные убедительно свидетель­ствуют, что наша планета существует не менее 5 миллиардов лет. Возраст Солнца, следовательно, по крайней мере не ниже этой цифры.

В настоящее время можно считать доказанным, что в недрах Солнца при огром­нейших температурах — порядка миллионов градусов — и чудовищных давлениях протекают так называемые термоядерные реакции, которые сопровождаются выде­лением огромного количества энергии. Термоядерная реакция в недрах Солнца будет происходить до тех пор, пока не иссякнут запасы водорода. В настоящее время они составляют около 60% массы Солнца. Такого резерва должно хватить по меньшей мере на несколько де­сятков миллиардов лет. Следовательно, человечество на долгие времена обеспечено солнечным теплом и светом .

Наше Солнце — источник не только света и тепла: его поверхность излучает по­токи невидимых ультрафиолетовых и рентгеновских лучей, а также корпускул — заряженных частиц вещества. Воздействие этих излучений на характер процессов в земной атмосфере было замечено уже много лет назад. Но изучение их по-настоя­щему началось лишь в последние годы. Хотя количество тепла и света, посылаемого на Землю Солнцем, на протяжении многих сотен миллионов лет остается постоян­ным, интенсивность его невидимых излучений значительно меняется: она зависит от уровня так называемой солнечной активности.

Солнце оказывает заметное влияние не только на такие природные процессы, как погода, земной магнетизм, но и на биосферу животный и растительный мир Земли, а также на человека.

Влияние солнечной активности на биологические процессы отмечалось многими исследователями. В конце прошлого столетия русский ученый Н. Шведов обнару­жил связь между толщиной годичных колец у деревьев и циклами активности наше­го дневного светила. Другие ученые установили связь между солнечной активностью и ростом морских кораллов, размножением рыб и грызунов, набегами саранчи.

Вернемся к нашим соседям по Солнечной системе. Начнем с ближайшего к нам небесного тела — естественного спутника Земли Луны.

Подобно тому, как наша Земля обращается вокруг Солнца, вокруг Земли дви­жется Луна. Луна меньше Земли, ее поперечник составляет около одной четверти земного диаметра, а масса в 81 раз меньше массы Земли. Поэтому сила тяжести на Луне в 6 раз меньше, чем на нашей планете. Слабая сила притяжения не позволила Луне удержать атмосферу, по той же причине не может быть на ее поверхности и воды. Открытые водоемы быстро испарились бы, а водяной пар улетучился бы в кос­мос.

Поверхность Луны весьма неровная: она покрыта горными хребтами, кольце­выми горами — кратерами и темными пятнами равнинных областей, называемых морями. Однако и в морях расположено много мелких кратеров. Длительное воздействие разнообразных внешних факторов привело к тому, что на поверхности Луны образовался рыхлый слой, покрывающий основную породу — риголит, состоящий из осколков магматических пород, шлакообразных частиц и застывших капель расплавленной магмы. Толщина его в разных районах колеб­лется от нескольких миллиметров до нескольких метров. Что касается лавы, заполняющей лунные бассейны, то она имеет внутрен­нее происхождение, и не могла образоваться в результате метеорных ударов. Но та­кие удары, возможно, вызвали нарушения лунной коры, открыв тем самым выход лавовым потокам на поверхность.

Для выяснения истории Луны очень важно знать возраст различных ее образований. С этой целью производилось определение возраста лунных пород, доставленных на Землю космическими аппаратами из различных районов лунной поверхности.

На основе имеющихся в настоящее время данных можно составить такую картину. В первые 500 миллионов лет происходило расплавление вещества Луны, хотя оно и не охватило всю массу сразу. К концу этого срока уже образовались конти­ненты, а в период с 700 миллионов лет до 1,2 миллиарда лет — моря. Как показы­вают исследования, проведенные с помощью космических аппаратов, примерно 95% пород, покрывающих лунную поверхность, прошли в свое время через магматическое состояние. Причем все это разновидности базальтов. Гранитов, часто встречающихся на Земле, на Луне нет совсем.

Ближайшая к Солнцу планета — Меркурий обладает, как и Плутон, наибольшей эллиптичностью своей орбиты, в результате чего расстояние от планеты до Солнца изменяется в пределах от 46 млн. до 70 млн. км. Среднее же расстояние от Солнца до Меркурия составляет 58 млн. км. — в 3 раза меньше, чем до Земли. Несмотря на значительную яркость, эта планета с трудом под­дается наблюдению, так как никогда не удаляется от Солнца более чем на 28 граду­сов к западу или к востоку. Это приводит к тому, что она почти всегда “прячется” на светлом фоне утренней или вечерней зари. И все же “неуловимая” планета иногда дарит ученым возможность наблюдать ее в дневное время, когда она медленно про­ходит на фоне солнечного диска. Это редкое астрономическое явление наблюдалось, в частности, в ноябре 1973 года. Меркурий — наименьшая из всех планет, его диаметр — всего около 5000 км. В телескоп он наблюдается в виде серпика. Обладает массивным металлическим ядром, радиус которого составляет три четверти радиуса самой планеты. Его подсолнечная сторона нагревается до 300 — 420 градусов С0 на ночной стороне мороз достигает минус 70 градусов С0 . У Меркурия обнаружено магнитное поле, существование которого, по всей веро­ятности, связано с процессами, происходящими в его ядре.

Вторая от Солнца планета — Венера, ближайшая наша соседка: при ее наибольшем сближении с Землей нас разделяет всего около 40 млн. км. Орбита Венеры отдалена от дневного светила на 108 млн. км.. Энергетический “паек” этой планеты в 2,5 раза превышает земной. За 225 земных суток Венера со­вершает полный оборот вокруг Солнца. Скорость ее движения по орбите — около 35 км/сек..

Наличие атмосферы и почти одинаковые с Землей размеры и масса долгое время позволяли ученым считать Венеру “близнецом” нашей планеты. Но исследования, последних лет заставили ученых решительно отказаться от такого взгляда. Главное отличие Венеры от Земли — особенность ее суточного вращения. Оказалось, что сутки на этой планете, подобно Меркурию, длиннее ее года: оборот Венеры вокруг оси длит­ся дольше, чем обращение вокруг Солнца, и совершается в обратном направлении, чем у других планет земной группы. Период вращения относительно звезд составляет около 244 земных суток. Ось вращения практически перпендикулярна к плоскости орбиты. Это значит, что на Венере не происходит смены времен года.

Через каждые полтора года Венера сближается с Землей, причем в это время всегда бывает обращена к Земле одним и тем же участком поверхности. Ее поперечник всего на 600 км. меньше земного, а сила тяжести почти такая же, как и на Земле. Если доставить с Земли на Венеру килограммовую гирю, то там она будет весить 850 граммов. Поэтому нет ничего удивительного в том, что Венера окружена атмосферной оболочкой. В ней плавает густая непрозрач­ная пелена многокилометровой облачности, скрывающей от астрономических на­блюдений поверхность планеты.

Надежные сведения о физических условиях на Венере удалось получить лишь тогда, когда к облачной планете полетели автоматические космические станции. Оказалось, что условия на Венере очень сильно отличаются от земных. Температура у поверхности составляет около 500 градусов С 0 , а давление достигает почти 100 атмосфер. Это значит, что на каждый квадратный сантиметр здесь давит столб газа весом в 100 кг. Облачность Венеры на высотах порядка 49-70 км состоит из капель концентрированной серной кислоты. А атмосферная оболочка планеты состоит на 95-96% из углекислого газа. На высоте около 50 км в ней обнаружены в очень большом количестве частицы серы, а не­сколько ниже — частицы хлора.

Вообще же рельеф поверхности Венеры заметно отличается от рельефа поверх­ности Земли. Большую часть занимают холмистые равнины. Возвышенности же, по­добные земным континентам, в общей сложности занимают площадь, сравнимую с площадью Австралии. Некоторые из этих возвышенностей похожи на земные вулканические массивы.

Земля — третья планета от Солнца. Она удалена от него на расстояние 150 млн. км. Это расстояние в астрономии принято употреблять в качестве единицы длины для измерения расстояния между телами Солнечной системы. Точное значение этой единицы составляет 149 597 892 ± 1,5 км. Вследствие небольшой эллиптичности орбиты расстояние от Земли до Солнца изменяется в пределах около 5 млн. км..

Полный оборот по орбите Земля завершает за 365,25 суток, двигаясь вокруг Солнца со скоростью 30 км/сек. Находясь на Земле, мы сами прини­маем участие в этом движении, совершенно не ощущая его. Годовое движение Земли вокруг Солнца и суточное — вокруг оси — главные движения нашей планеты. Всего Земля совершает не менее 14 движений в космичес­ком пространстве. Среди них такие значительные, как поступательное движение, со­вершаемое вместе с Солнцем и другими планетами со скоростью 20 км/сек по направлению к созвездию Геркулеса, и участие в общем обращении Солнца и звезд вокруг центра нашей звездной системы — Галактики.

Ось суточного вращения Земли наклонена к плоскости орбиты на 66 градусов 5 минут и направлена северным концом в точку на небесной сфере, расположенную рядом со звездой Альфа в созвездии Малой Медведицы. Эта звезда, называемая Полярной, является центром вращения небесной сферы.

Своим притяжением Земля удерживает вокруг себя атмосферу, состоящую в основном из азота и кислорода. В качестве примесей в ее состав входят ар­гон и углекислый газ. Существенной особенностью нашей планеты является оби­лие воды: площадь морей и океанов составляет примерно три пятых земной поверх­ности. Вода и водяные пары в атмосфере играют огромную роль в протекании раз­личных геофизических и биологических процессов на Земле.

Земной шар окружает магнитное поле, играющее роль ловушки для электри­чески заряженных частиц, приходящих из космоса. Далеко за пределами атмосферы Земля опоясана облаками частиц высоких энергий, образующих пояса радиации. Эти пояса защищают нашу планету от жестких космических лучей, губительных для всего живого.

Следующая планета — Марс, орбита которого удалена от Солнца на 227 млн. км.. Он получает от Солнца значительно меньше света и тепла, чем Земля. Средняя температура на Марсе колеблется от +30 до -80 граду­сов. В полярных зонах планеты зарегистрирована температура около -130 гра­дусов.

Скорость движения Марса по орбите — 24 км/сек. Полный оборот вокруг Солнца он завершает за 687 земных суток — марсианский год почти в 2 раза длиннее земного. Из-за наклона оси вращения на Марсе, так же как и на Земле, про­исходит смена времен года. Сутки там всего на 37 минут длиннее земных. Поперечник планеты — 6780 км., а масса почти в 10 раз меньше земной. Поэтому сила тяжести на Марсе в 2,5 раза меньше, чем на Земле.

На некоторых участках Марса обнаружены горные хребты, вулканические конусы и купола. В иных местах видны глубокие каньоны с изрезанными краями. Встречаются также хаотические нагромождения каменных обломков. Есть на Марсе и горы, относительно вулканической природы, которых нет ника­ких сомнений. Самая большая из них — гора Снега Олимпа высотой около 27 км.. Для сравнения достаточно напомнить, что высочайшая горная вершина Земли Эве­рест не достигает и 9 км.. Когда в 1971 году на Марсе бушевала сильнейшая пылевая буря, то конус Снегов Олимпа возвышался над пылевой пеленой. Наличие на Марсе столь высоких гор вулканического происхождения свидетель­ствует о большой мощи вулканических процессов, благодаря которым на поверх­ность планеты изливались огромные массы вещества.

Значительная часть поверхности Марса — это сухие пустынные районы, покрытые красноватым грунтом и большим количеством камней. Благодаря этому Марс и вы­деляется среди других планет своим характерным красноватым цветом. Жидкой воды на Марсе нет. При тех физических условиях, которые существуют на этой планете, вода на ее поверхности может находиться только в твердом состоя­нии — в виде снега, льда или инея. Некоторые ученые считают также, что под поверх­ностью Марса имеется слой вечной мерзлоты.

У полюсов Марса расположены светлые пятна — полярные шапки, которые час­тично состоят из обычного водного льда, а частично из твердой углекислоты – “су­хого льда”. В весенние и летние периоды они испаряются и уменьшаются в размерах.

Газовая оболочка планеты в основном состоит из углекислого газа и сильно разрежена: атмосферное давление у поверхности приблизительно в 100 раз ниже, чем на Земле. В атмосфере Марса дуют сильные ветры, время от времени они под­нимают пылевые частицы с поверхности планеты, и тогда возникают пылевые бури, которые длятся от нескольких недель до нескольких месяцев и охватывают иногда целое полушарие.

Пятая по расстоянию планета от Солнца — гигант Юпитер. Он окружен мощной атмосферой, которая состоит главным образом из водорода. Гелий составляет по объему около 11 % газовой оболочки планеты. В верхних слоях атмосферы Юпитера расположен видимый внешний облачный покров, который состоит из капель и льдинок аммиака. В более глубоких слоях пре­обладает сернистокислый аммоний, а еще глубже — водяные капли. На глубине око­ло тыс. км. начинается слой газожидкого водорода. Видимо, и вообще большая часть массы Юпитера находится в жидком состоянии. Лишь в самом цент­ре планеты, возможно, расположено твердое ядро. По своим размерам оно в 1,7 раза превосходит нашу Землю.

Устойчивая атмосферная циркуляция в экваториальной области приводит к тому, что облачные системы образуют характерную картину темных поясов и светлых зон, параллельных экватору планеты. Существуют в атмосфере Юпитера и устойчи­вые вихри, которые могут сохраняться до 100 тысяч лет. Одним из таких вихрей яв­ляется знаменитое Красное Пятно, которое вдвое больше Земли. Период его собст­венного вращения близок к шести земным суткам.

Вследствие того, что облачные образования могут взаимодействовать друг с другом, в верхнем облачном слое планеты иногда возникают дыры, существую­щие до одного года. Сквозь эти дыры просматриваются более глубокие слои об­лачности.

У Юпитера обнаружены протяженная магнитосфера и радиационные пояса, напо­минающие радиационные пояса Земли, но во много раз превосходящие их по своим размерам.

Хотя планеты — гиганты состоят из водорода и гелия, их многочисленные спут­ники являются телами земного типа. И как показали исследования с борта косми­ческих аппаратов, они подобно Луне или Меркурию также подвергались в свое время интенсивной метеоритной бомбардировке. Следы метеоритных ударов видны на поверхности третьего спутника Юпитера — Ганимеда и особенно четвертого — Каллисто. Оба эти спутника покрыты толстым ледяным панцирем. И поэтому кратерные образования на них имеют зна­чительно более светлую окраску, чем кольцевые структуры на Луне.

Следующая за Юпитером планета Сатурн выделяется среди всех планет Солнечной системы своим необычным видом. Она окружена удивительным и необычайно кра­сивым образованием — кольцами, состоящими главным образом из множества мел­ких ледяных частиц и ледяных глыб размером до нескольких десятков метров, обращающихся вокруг основного тела планеты.

На протяжении длительного времени кольца Сатурна считались уникальным об­разованием в семье планет. Однако несколько лет назад оптическими и радиоастро­номическими наблюдениями система колец была обнаружена и вокруг седьмой пла­неты Солнечной системы — Урана. А спустя еще некоторое время космическая станция “Вояджер-1” зарегистрировала наличие слабого кольца и у планеты Юпитер.

Но поистине сенсационным было другое. Оказалось, что Сатурн окружен не шестью-семью широкими кольцами, а несколькими сотнями концентрических узких колец. По оценкам специалистов, их число составляет от 500 до 1000. На фотогра­фиях видно, что эти узкие кольца, в свою очередь, распадаются на еще более тонкие “колечки” или “пряди”.

астероидов

Наиболее эфемерными космическими телами, входящими в состав Солнечной системы, являются кометы, движущиеся вокруг Солнца по сильно вытянутым эл­липтическим орбитам. Имея незначительную массу, они ничем не обнаруживают себя, когда находятся вдали от Солнца. Но по мере приближения к нему твердое ядро кометы, состоящее из каменных и металлических тел, заключенных в ледяную оболочку из замерзших газов, начинает испаряться, образуя огромный газовый шлейф — хвост, достигающий длины сотен миллионов километров.

Заключение

Огромное практическое значение науки в XX в. сделало ее той областью знания, к которой массовое сознание испы­тывает глубокое уважение. Слово науки весомо, и оттого рисуемая ею картина Вселенной часто принимается за точ­ную фотографию реальной действительности, как она есть на самом деле, независи­мо от нас. Ведь наука и претендует на эту роль — бесстра­стного и точного зеркала, отражающего мир в строгих понятиях и стройных математических вычислениях. Однако за привычным, коренящимся еще в эпохе Просвещения доверием к выводам науки, часто забывается, что она — развивающаяся и подвижная система знаний, что способы видения, присущие ей, изменчивы. А это означает, что сегодняшняя картина Вселенной не равна вчерашней. Повседневное сознание все еще живет на­учной картиной прошлых лет и веков, а сама наука уже убежала далеко вперед и рисует порой вещи столь па­радоксальные, что сама ее объективность и беспристраст­ность начинает казаться мифом…

Современная астрофизика вплотную подо­шла к изучению ряда природных процессов, которые не имеют пока удовлетворительного объяснения в рамках существующих знаний и понимание которых, по всей вероятности, потребует выхода за границы общепринятых фундаментальных теорий. Речь идет, в частности, о таких проблемах, как природа колос­сальных космических энергий, мощных физи­ческих процессов, протекающих в ядрах галактик и квазарах, поведение материи в условиях сверхвысокой плотности, взаимосвязь процессов микро- и мегамира, свойства вакуума и некоторые другие. Однако наука без­условно успешно решит эти вопросы, открыв новые природные закономерности, не имеющие ничего общего с потусторонними силами.

Из всего сказанного выше можно сделать следующие выводы: во-первых, в связи с тем что науки о Вселенной в настоящее время переживают период необычайно быстрого развития, принципиальные открытия в этой области, требующие кардинального пересмотра привычных представлений, следуют одно за другим. А поскольку религия всегда паразитировала на неполноте человеческих знаний, на их относительном характере, то одна из важнейших задач научно-атеистической пропаганды состоит в том, чтобы показывать науку не статично, то есть не как простую сумму тех или иных положений, а в динамике, как жи­вой диалектический процесс познания мира, с присущей ему закономерной сменой науч­ных предположений, идей, гипотез, теорий. Только такой подход дает правильное представление о материальном единстве мира и о возможностях человеческого познания.

Во-вторых, науками о Вселенной выдвинут в последнее время ряд фундаментальных по­ложений, которые представляются внутренне противоречивыми. Это дает теологам повод, с одной стороны, упрекать науку в несоответ­ствии ее положений реальной природе, а с другой — утверждать, что противоречивость научной картины мира будто бы свидетельст­вует о правомерности тех глубоких и нераз­решимых внутренних противоречий, которыми отличаются религиозные системы. Следова­тельно, в научно-атеистической пропаганде необходимо подчеркивать, что внутренние противоречия в познании мира-это не про­тиворечия между научным положением и ре­альностью, а отражение в научных знаниях противоречий, присущих самой природе.

В-третьих, для утверждения в сознании лю­дей научно-материалистического мировоззре­ния огромное значение имеет эксперименталь­ное подтверждение и практическое использо­вание научных знаний. В наши дни намного короче стал период, отделяющий момент со­вершения научного открытия от его практи­ческого применения. Это относится, разумеет­ся, и к открытиям в области астрофизики и других наук о Вселенной. А использование научных знаний на практике — один из наи­более весомых и действенных аргументов про­тив религиозных взглядов и представлений.

Примечательная черта стремительного прогресса иссле­дований Вселенной в условиях современной НТР — ко­ренные изменения структуры научной деятельности астрономов, включая революционные изменения средств и методов изучения Вселенной, условий познания, что привело к лавине выдающихся открытий, обнаружению ранее не известных типов космических объектов, кото­рые часто находятся в состояниях резкой нестационарно­сти (эти состояния характеризуются колоссальным энер­говыделением), и в конечном счете к существенной пе­рестройке всей системы знания о Вселенной.

Современные исследования Вселенной все более от­четливо выступают как “моделирование” схем будущей деятельности по практическому освоению небесных тел, их включению в материально-производственную дея­тельность общества.

Впечатляющий прогресс науки о Вселенной, начатый великой коперниканской революцией, уже неоднократно приводил к весьма глубоким, подчас радикальным изме­нениям в исследовательской деятельности астрономов и, как следствие, в системе знания о структуре и эволюции космических объектов. В наше время астрономия разви­вается особенно стремительными темпами, нарастающи­ми с каждым десятилетием. Поток выдающихся откры­тий и достижений неудержимо наполняет ее новым со­держанием. Есть все основания считать, что в этой науке началась новая революция, которая по своим масшта­бам и значению, быть может, не уступает великому коперниканскому перевороту

Наш век, последнее десятилетие которого вот-вот исте­чет, стал веком коренной смены парадигм научного мышле­ния и радикального изменения, естественнонаучной картины мира.

Современная научная картина мира динамична, проти­воречива . В ней больше вопросов, чем ответов. Она изумля­ет, пугает, ставит в тупик, шокирует. Поискам познающего разума нет границ, и в ближайшие годы мы, возможно, будем потрясены новыми открытиями и новыми идеями.

Список использованной литературы

[Электронный ресурс]//URL: https://psychoexpert.ru/referat/modeli-evolyutsii-vselennoy-filosofskiy-analiz/

Астахова В.Г, Дубровский Е.В. и др. “Мир вокруг нас: Беседы о мире и его законах” – М.: Политиздат, 1983 г.

“Материалистическая диалектика и пути развития естествознания” / Под ред. А.М. Мостапенко – Л.: Издательство ленинградского университета, 1987 г.

Кохановский В.П. “Философия” – Р.: Феникс, 1996 г.

Дубровский Е.В. “Разум побеждает” – М.: Политиздат, 1989 г.

“Философия, естествознание и современность” / Под ред. И.Т. Фролова и Л.И. Грекова – М.: Мысль, 1991 г.