В настоящее время человечеству известно около 10 миллионов химических соединений. Из них более 60 тысяч широко используются в быту, медицине, на производстве и в сельском хозяйстве. Это количество веществ продолжает из года в год увеличиваться (по некоторым данным примерно на 1000 наименований ежегодно).
И большая их часть при определенных обстоятельствах может причинить «серьезный вред здоровью».
Подобное обстоятельство ставит под сомнение саму возможность выделить из всей совокупности химических веществ окружающего мира, естественных и синтезированных человеком, некую группу, обозначаемую как «яд». В наиболее категоричной форме эта мысль выражена еще в ХIХ веке известным французским судебным медиком Тардье: «Ядов в научном смысле слова нет».
Накопленные человечеством знания давно привели к осознанию того факта, что практически любое химическое вещество, в зависимости от действующего количества, может быть безразличным, полезным, вредным для организма (т.е. выступать в качестве яда).
Впервые на это указал еще в ХV веке выдающийся врач, химик, основоположник ятрохимии Теофраст Бомбаст фон Гогенгейм (Парацельс).
В своей оправдательной речи, сказанной им по поводу обвинения в отравлении больных ядами (солями металлов, которые он применял в качестве лекарств), Парацельс произнес: «Все есть яд. Ничто не лишено ядовитости. И только доза отличает яд от лекарства».
Таким образом, не удивительно, что ученые пытаются исключить термин «яд» из своих определений.
Однако все сказанное выше призвано подчеркнуть важнейшее обстоятельство — химические вещества, обладают неким свойством, в силу которого их контакт с биологическими системами может иметь пагубные последствия для последних. Это свойство — токсичность.
^
1.1 Понятие токсичности вещества.
Токсичность — свойство (способность) химических веществ, действуя на биологические системы немеханическим путем, вызывать их повреждение или гибель, или, применительно к организму человека, — способность вызывать нарушение работоспособности, заболевание или гибель.
Теоретически не существует веществ, лишенных токсичности. При тех или иных условиях, обнаружится биологический объект, реагирующий повреждением, нарушением функций, гибелью на действие вещества в определенных дозах. Токсичность веществ, полностью инертных в отношении биологических объектов, может быть количественно обозначена, как стремящаяся (но не равная) к нулю.
Философские вопросы химии и их влияние на дальнейшее развитие химической науки
... Теории и факты химической науки предоставляют нам конкретные доказательства научности основных положений диалектики, и поэтому основной целью этого реферата является задача показать с помощью примеров основных положений науки (химии) и философии ...
Действие веществ, приводящее к нарушению функций биологических систем, называется токсическим действием. В основе токсического действия лежит взаимодействие вещества с биологическим объектом на молекулярном уровне. Химизм взаимодействия токсиканта и биологического объекта на молекулярном уровне называется механизмом токсического действия.
Следствием токсического действия веществ на биологические системы является развитие токсического процесса.
^
Токсичность проявляется и может быть изучена только в процессе взаимодействия химического вещества и биологических систем (клетки, изолированного органа, организма, популяции).
Формирование и развитие реакций биосистемы на действие токсиканта, приводящих к её повреждению (т.е. нарушению её функций, жизнеспособности) или гибели называется токсическим процессом. Важнейшим элементом любого токсикологического исследования является изучение характеристики, закономерностей формирования токсического процесса. Поэтому токсикология — это наука о токсическом процессе.
Механизмы формирования и развития токсического процесса, его качественные и количественные характеристики, прежде всего, определяются строением вещества и его действующей дозой. Однако формы, в которых токсический процесс проявляется, несомненно, зависят также от вида биологического объекта, его свойств.
Внешнего потребителя токсикологических знаний (гражданина, инженера по технике безопасности, химика-синтетика, эколога, обеспечивающего сохранение окружающей среды и т.д.) прежде всего, интересует токсичность рассматриваемого вещества. Врача, биолога, глубоко исследующего пагубные последствия вредного действия этого вещества на организм, обеспечивающего профилактику и лечение поражений — токсический процесс.
Внешние, регистрируемые признаки токсического процесса называются его проявлениями. В ряде приведенных выше определений токсикологии просматривается представление, согласно которому единственной формой проявления токсического процесса является интоксикация (отравление).
Интоксикация действительно основная и наиболее изученная, однако далеко не единственная форма.
Проявления токсического процесса определяются уровнем организации биологического объекта, на котором токсичность вещества изучается:
- клеточном;
- органном;
- организменном;
- популяционном.
Если токсический эффект изучают на уровне клетки (как правило в опытах in vitro ), то судят прежде всего о цитотоксичности вещества. Цитотоксичность выявляется при непосредственном действии соединения на структурные элементы клетки. На практике к изучению цитотоксичности прибегают: — при использовании культур клеток для оценки токсичности новых веществ в опытах in vitro ; при исследовании механизмов токсического действия веществ; при проведении процедуры биотестирования (выявления токсикантов) объектов окружающей среды и т.д.
Токсический процесс на клеточном уровне проявляется: обратимыми структурно-функциональными изменениями клетки (изменение формы, сродства к красителям, подвижности и т.д.); преждевременной гибелью клетки (некроз, апоптоз); мутациями (генотоксичность).
Токсический процесс на уровне целостного организма проявляться: болезнями химической этиологии (интоксикации, отравления); транзиторными токсическими реакциями — быстро и самопроизвольно проходящими состояниями, сопровождающимися кратковременной утратой дееспособности (явление раздражение глаз, дыхательных путей; седативно-гипнотические состояния; психодислептические состояния и т.д.);
Социальное воспитание в процессе становления личности
... зрения процесса включения ребенка в нее через ближайшую социальную среду, в общество в целом. С этой точки зрения важным становится то, что отношения человека и внешних социальных условий его жизни, его жизни в ...
- аллобиозом — стойкими изменениями реактивности организма на воздействие физических, химических, биологических факторов окружающей среды, а также психические и физические нагрузки (аллергия, иммуносупрессия, повышенная утомляемость и т.д.);
- специальными токсическими процессами — развивающимися лишь у части популяции, как правило, в особых условиях (действие дополнительных веществ;
- в определенный период жизнедеятельности организма и т.д.) и характеризующимися продолжительным скрытым периодом (канцерогенез, эмбриотоксичность, нарушение репродуктивных функций и т.д.).
Токсическое действие веществ, регистрируемое на популяционном и биогеоценологическом уровне, может быть обозначено как экотоксическое. Экотоксический процесс, как правило, исследуют врачи профилактики либо в порядке текущего планового контроля, либо в процессе заданных исследований.
Экотоксический процесс на уровне популяции проявляется: ростом заболеваемости, смертности, числа врожденных дефектов развития, уменьшением рождаемости; нарушением демографических характеристик популяции (соотношение возрастов, полов и т.д.); падением средней продолжительности жизни членов популяции, их культурной деградацией.
^
Из всех форм проявления токсического процесса наиболее изученной и в наибольшей степени привлекающей внимание врача является интоксикация. Механизмы формирования и особенности течения интоксикаций, зависят от строения ядов, их доз, условий взаимодействия с организмом. Однако можно выделить некоторые общие характеристики этой формы токсического процесса.
1. В зависимости от продолжительности взаимодействия химического вещества и организма интоксикации могут быть острыми, подострыми и хроническими.
-
Острой называется интоксикация, развивающаяся в результате однократного или повторного действия веществ в течение ограниченного периода времени (как правило, до нескольких суток).
-
Подострой называется интоксикация, развивающаяся в результате непрерывного или прерываемого во времени (интермитирующего) действия токсиканта продолжительностью до 90 суток.
-
Хронической называется интоксикация, развивающаяся в результате продолжительного (иногда годы) действия токсиканта.
Не следует путать понятие острой, подострой, хронической интоксикации с острым, подострым, хроническим течением заболевания, развившегося в результате контакта с веществом. Острая интоксикация некоторыми веществами (иприты, люизит, диоксины, галогенированные бензофураны, паракват и др.) может сопровождаться развитием длительно текущего (хронического) патологического процесса.
Организм человека как единая саморазвивающаяся и саморегулирующаяся ...
... биологических основах физической культуры и спорта. организм гомеостаз человек физический умственный работоспособность Организм человека как единая биологическая система Все живое характеризуется четырьмя признаками: Рост Обмен веществ ... происходящих у нас в организме, например то, как организм перерабатывает пищу. Это происходит потому, что в организме все системы (нервная, сердечно-сосудистая, ...
2. Периоды интоксикации. Как правило в течении любой интоксикации можно выделить четыре основных периода: период контакта с веществом, скрытый период, период разгара заболевания, период выздоровления. Иногда особо выделяют период осложнений. Выраженность и продолжительность каждого из периодов зависит от вида и свойств вещества, вызвавшего интоксикацию, его дозы и условий взаимодействия с организмом.
3. В зависимости от локализации патологического процесса интоксикация может быть местной и общей.
-
Местной называется интоксикация, при которой патологический процесс развивается непосредственно на месте аппликации яда. Возможно местное поражение глаз, участков кожи, дыхательных путей и легких, различных областей желудочно-кишечного тракта. Местное действие может проявляться альтерацией тканей (формирование воспалительно-некротических изменений — действие кислот и щелочей на кожные покровы и слизистые; ипритов, люизита на глаза, кожу, слизистые желудочно-кишечного тракта, легкие и т.д.) и функциональными реакциями (без морфологических изменений — сужение зрачка при действии фосфорорганических соединений на орган зрения).
-
Общей называется интоксикация, при которой в патологический процесс вовлекаются многие органы и системы организма, в том числе удаленные от места аппликации токсиканта. Причинами общей интоксикации, как правило, являются: резорбция токсиканта во внутренние среды, резорбция продуктов распада пораженных покровных тканей, рефлекторные механизмы.
Если какой-либо орган или система имеют низкий порог чувствительности к токсиканту, в сравнении с другими органами, то при определенных дозовых воздействиях возможно избирательное поражение этого органа или системы. Вещества, к которым порог чувствительности того или иного органа или системы значительно ниже, чем других органов, иногда обозначают как избирательно действующие. В этой связи используют такие термины как: нейротоксиканты (например, психотомиметики), нефротоксиканты (например, соли ртути), гапатотоксиканты (например, четыреххлористый углерод), гематотоксиканты (например, мышьяковистый водород), пульмонотоксиканты (например, фосген) и т.д. Такое действие развивается крайне редко, как правило, при интоксикациях чрезвычайно токсичными веществами (например, ботулотоксином, тетродотоксином, аманитином).
Чаще общее действие ксенобиотика сопровождается развитием патологических процессов со стороны нескольких органов и систем (например хроническое отравление мышьяком — поражение периферической нервной системы, кожи, легких, системы крови).
В большинстве случаев интоксикация носит смешенный, как местный, так и общий характер.
4. В зависимости от интенсивности воздействия токсиканта (характеристика, определяющаяся дозо-временными особенностями действия) интоксикация может быть тяжелой, средней степени тяжести, и легкой.
-
Тяжелая интоксикация — угрожающее жизни состояние. Крайняя форма тяжелой интоксикации — смертельное отравление.
5 стр., 2264 словОтравляющие вещества нервно-паралитического действия
... GB является одним из основных отравляющих веществ смертельного действия, состоящих на вооружении армии США. ... соединений (например, моноэтаноламина). Местность и объекты, устойчивые к коррозии, можно дегазировать суспензиями гипохлоритов кальция (ГК), а также растворами щелочей. 3. Вещество ... GD (зоман) и VX. отравляющий нервный паралитический зоман зарин 1. Вещество GB (зарин) Химические названия: ...
-
Интоксикация средней степени тяжести — интоксикация, при которой возможны длительное течение, развитие осложнений, необратимые повреждение органов и систем, приводящее к инвалидизации или обезображиванию пострадавшего (химический ожег кожи лица).
-
Легкая интоксикация — заканчивается полным выздоровлением в течение нескольких суток.
^
Вещества существенно различаются по токсичности. Чем в меньшем количестве вещество способно вызывать повреждение организма, тем оно токсичнее. Токсикант — более широкое понятие, употребляющееся не только для обозначения веществ вызвавших интоксикацию, но провоцирующих и другие формы токсического процесса, и не только организма, но и биологических систем иных уровней организации: клеток (цитотоксикант), популяций (экотоксикант).
Нередко в токсикологической литературе используют термин ксенобиотик, подчеркивая тем самым, что некое химическое вещество рассматривается без учета последствий его действия на организм.
Ксенобиотик — это чужеродное (не участвующее в пластическом или энергетическом обмене) вещество, попавшее во внутренние среды организма.
В качестве токсикантов (ядов) могут выступать практически любые соединения различного строения, если, действуя на биологические системы не механическим путем, они вызывают их повреждение или гибель.
В настоящее время известны тысячи химических веществ, используемых человеком в быту, медицине, на производстве, в сельском хозяйстве. Поскольку, как следует из определения, по сути, любое из химических веществ при тех или иных условиях может вызвать токсический процесс, полная классификации токсикантов возможна только на принципе их химического строения. Она-то и положена в основу наиболее подробных справочных пособий по токсикологии как у нас в стране, так и за рубежом («Вредные вещества в промышленности»; «Вредные химические вещества»).
Однако такая классификация не позволяет составить общего представления о содержании проблемы химической опасности. Предлагаемая читателю структура токсикантов является рубрикатором, позволяющим идентифицировать химическую опасность по ряду принципов:
1. По происхождению
1.1. Токсиканты естественного происхождения
1.1.1. Биологического происхождения
1.1.1.1. Бактериальные токсины
1.1.1.2. Растительные яды
1.1.1.3. Яды животного происхождения
1.1.2. Неорганические соединения
1.1.3. Органические соединения небиологического происхождения
1.2. Синтетические токсиканты
2. По способу использования человеком
2.1. Ингредиенты химического синтеза и специальных видов производств
2.2. Пестициды
2.3. Лекарства и косметика
2.4. Пищевые добавки
2.5. Топлива и масла
2.6. Растворители, красители, клеи
2.7. Побочные продукты химического синтеза, примеси и отходы
3. По условиям воздействия
3.1.Загрязнители окружающей среды (воздуха, воды, почвы, продовольствия)
3.2.Профессиональные (производственные) токсиканты
3.3.Бытовые токсиканты
3.4.Вредные привычки и пристрастия (табак, алкоголь, наркотические средства, лекарства и т.д.)
3.5. Поражающие факторы при специальных условиях воздействия
3.5.1. Аварийного и катастрофального происхождения
3.5.2. Боевые отравляющие вещества и диверсионные агенты
2. Краткая характеристика отдельных групп токсикантов
2.1. Токсиканты биологического происхождения
^
- Бактериальные токсины:
По большей части бактериальные токсины представляют собой высокомолекулярные соединения, как правило, белковой, полипептидной или липополисахаридной природы, обладающие антигенными свойствами. В настоящее время выделены и изучены более 150 токсинов.
Многие бактериальные токсины относятся к числу самых ядовитых из известных веществ. Это, прежде всего, ботулотоксин, холерные токсины, тетанотоксин, стафилококковые токсины, дифтирийные токсины и т.д. Ботулотоксин и стафилококковые токсины рассматривались как возможные боевые отравляющие вещества. Бактериальные токсины действуют на разные органы и системы млекопитающих и, в частности, человека, однако преимущественно страдают нервная и сердечно-сосудистая системы, реже слизистые оболочки.
Бактерии могут продуцировать и токсические вещества относительно простого строения. Среди них формальдегид, ацетальдегид, бутанол.
- Микотоксины:
Химическое строение и биологическая активность микотоксинов чрезвычайно разнообразны. Они не представляют собой некую единую в химическом отношении группу. С практической точки зрения наибольший интерес представляют вещества, продуцируемые микроскопическими грибами, способные заражать пищевые продукты человека и животных. К таковым относятся, в частности, некоторые эрготоксины, продуцируемые грибами группы Claviceps (спорынья, маточные рожки), афлатоксины (B 1 , В2 , G1 , G2 ) и близкие им соединения, выделяемые грибами группы Aspergillus, трихотеценовые микотоксины (более 40 наименований), продуцируемые несколькими родами грибов, преимущественно Fusarium, охратоксины (В, С), патулин и др.
Аналоги эрготамина действуют на центральную нервную систему, вызывают спазм кровеносных сосудов и сокращение мускулатуры матки. Отравление зерном, зараженным спорыньей, в старые времена не редко носили характер эпидемий. В настоящее время подобные эпидемии среди населения практически не отмечаются, однако возможно поражение рогатого скота. Отравление веществами случаются при попытке прервать с их помощью беременность. Аналоги эрготамина — производные эрготина. Одним из известнейших производных эрготина является галлюциноген диэтиламид лизергиновой кислоты (ДЛК).
Многие высшие грибы также продуцируют токсические вещества различного строения с широким спектром физиологической активности. Наиболее опасными являются аманитины, аманины и фаллоидины, содержащиеся в бледной поганке и при случайном использовании в пищу гриба вызывающие поражение печени и почек. Другими известными токсикантами являются мускарин, гиромитрин, иботеновая кислота и др. Вещества, синтезирующиеся отдельными видами грибов обладают выраженной галлюциногенной активностью, например псилоцин, псилоцибин и др
- Токсины высших растений:
Огромное количество веществ, токсичных для млекопитающих, человека и других живых существ, синтезируется растениями (фитотоксины).
Являясь продуктами метаболизма растений, фитотоксины порой выполняют защитные функции, отпугивая потенциальных консументов. Однако по большей части их значение для жизнедеятельности растения остается неизвестным. Фитотоксины представляют собой вещества с различным строением и неодинаковой биологической активностью. Среди них: алкалоиды, органические кислоты, терпеноиды, липиды, гликозиды, сапонины, флавоноиды, кумарины, антрахиноны и др.
Алкалоиды — азотсодержащие органические гетероциклические основания. В настоящее время известно несколько тысяч алкалоидов, многие из которых обладают высокой токсичностью для млекопитающих и человека.
Гликозиды — соединения, представляющие собой продукты конденсации циклических форм моно- или олигосахаридов со спиртами (фенолами), тиолами, аминами и т.д. Неуглеводная часть молекулы называется агликном, а химическая связь агликона с сахаром — гликозидной. Гликозидная связь достаточно устойчива и не разрушается в водных растворах веществ. Наиболее известны сердечные (стероидные) гликозиды, в которых в качестве агликона выступают производные циклопентанпергидрофенантрена. Эти соединения, продуцируемые растениями самых разнообразных видов, обладают высокой токсичностью, обусловленной отчасти избирательным действием на сердечную мышцу.
Сапонины — наиболее часто встречаются в виде стероидов спиростанового ряда и пентациклических терпеноидов. Сапонины обладают раздражающим действием на слизистые оболочки млекопитающих, а при попадании в кровь вызывают гемолиз эритроцитов.
Кумарины — кислородсодержащие гетероциклические соединения, обладающие антикоагулянтным и фотосенсибилизирующим действием. Известно несколько сот веществ, относящихся к классу кумаринов.
Многие вещества растительного происхождения широко используются в медицине, например атропин, галантамин, физостигмин, строфантин, дигитоксин и многие, многие другие. Ряд фитотоксинов вызывают вредные пристрастия и являются излюбленным зельем токсикоманов и наркоманов. Среди них: кокаин, никотин, гармин, морфин, канабиноиды и др. Нередко продукты жизнедеятельности растений являются аллергенами. Отдельные фитотоксины обладают канцерогенной активностью. Например, сафрол и близкие соединения, содержащиеся в черном перце, соланин обнаруживаемый в проросшем картофеле, хиноны и фенолы, широко представленные в многочисленных растениях. Некоторые токсиканты, содержатся в растениях в ничтожных количествах и могут оказывать токсический эффект лишь в форме специально приготовленных препаратов, другие вызывают интоксикацию при поедании растений, содержащих их.
- Токсины животных (зоотоксины)
Любой живой организм синтезирует огромное количество биологически активных веществ, которые после выделения, очистки и введения другим организмам в определенных дозах могут вызывать тяжелые интоксикации. Однако часть животных самых разных семейств, родов и видов содержат в органах и тканях чрезвычайно токсичные вещества, что позволяет выделить их в особую группу ядовитых (опасных) животных. Некоторые животные являются вторично-ядовитыми, поскольку не продуцируют, но аккумулируют яды, поступающие из окружающей среды (моллюски, накапливающие в тканях сакситоксин, синтезируемый одноклеточными организмами).
Часть биологически активных веществ, вырабатываемых животными, являются так называемыми пассивными зоотоксинами, оказывающими действие при поедании животного-продуцента. Другие — активные токсины. Они вводятся в организм жертвы с помощью специального аппарата (жала, зубов, игл и т.д.).
Ежегодно от укусов ядовитых животных в мире погибает несколько тысяч человек 1 .
Высокотоксичные соединения относительно простого строения обнаружены в тканях некоторых насекомых, моллюсков, рыб и земноводных. Отдельные представители этих веществ рассматривались как возможные боевые отравляющие вещества (сакситоксин, тетродотоксин, батрахотоксин, буфотенин и др.)
- Неорганические соединения естественного происхождения
Среди многочисленных неорганических соединений естественного происхождения, вероятно, наибольшее токсикологическое значение имеют металлы и их соединения, а также газообразные вещества — поллютанты атмосферного воздуха и воздуха производственных помещений.
В естественных условиях металлы встречаются в форме руд и минералов. Они определяются в воздухе, почве и воде. Выплавка металлов из руд и использование в самых разнообразных отраслях человеческой деятельности привели к существенному увеличению их содержания в окружающей среде. Наибольшее токсикологическое значение имеют ртуть, кадмий, хром, мышьяк, свинец, бериллий, цинк, медь, таллий и др. Бериллий широко используется в металлургической промышленности. Кадмий воздействует на человека при проведении сварочных работ и в ходе других производственных процессов. В настоящее время кадмий рассматривается как один из опаснейших экотоксикантов. Ртуть нашла применение в электронной промышленности и производстве фунгицидов. Ранее эпидемии отравлений ртутью имели место на целлюлёзно-бумажных производствах. Еще одним важным, с точки зрения токсикологии, металлом является свинец. Широчайшее использование свинца в хозяйственной деятельности приводит к постепенному накоплению металла в окружающей среде.
Большую опасность представляют некоторые органические соединения металлов (ртути, свинца, олова, мышьяка).
В группу газообразных поллютантантов входят вещества, находящиеся в газообразном состоянии при нормальной температуре и атмосферном давлении, а также пары летучих жидкостей. Среди веществ, представляющих наибольшую опасность: монооксид и диоксид углерода (СО, СО 2 ), сероводород (Н2 S), оксиды азота (Nx Oy ), озон (О3 ), оксиды серы (Sx Oy ) и др. Обмен многих поллютантов в атмосфере проходит естественным путем. Так, в процессе вулканической активности в атмосферу выбрасываются оксиды серы, галогены, сероводород. В ходе лесных пожаров выделяется огромное количество СО, оксидов азота, сажи. Основным источником газообразных веществ в атмосфере являются растения. Источниками газообразных загрязнителей антропогенного происхождения являются:
1. Продукты сгорания топлива;
2. Отходы эксплуатации транспортных средств;
3. Промышленные производства;
4. Добывающая и горнорудная промышленность.
Результатом горения топлива является образование большого количество оксидов углерода, азота, серы. Эксплуатация транспортных средств приводит к выбросу в атмосферу свинца, СО, NO, углеводородов. Производства — основной источник кислот, растворителей, хлора, аммиака.
Газообразные вещества в бытовых условиях образуются при приготовлении пищи, курении, эксплуатации бытовой техники 2 .
Основные источники и эффекты, вызываемые некоторыми неорганическими соединениями, представлены на таблице 2.1.
Таблица 2.1
Источники и эффекты некоторых неорганических соединений — загрязнителей воздуха.
Поллютанты |
Эффекты |
|
Оксиды серы |
Продукты горения угля и нефти |
Основные компоненты кислотных дождей; поражение легких |
Оксиды азота |
Автомобильный транспорт; теплоэлектростанции |
Фотохимические процессы в атмосфере; кислотные дожди; поражение легких |
Монооксид углерода |
Автомобильный транспорт; продукт горения |
Нарушение кислородтранспортных свойств крови |
Озон |
Автомобильный транспорт; |
Фотохимические процессы в атмосфере; поражение легких |
Асбест |
Добыча; производство изделий |
Асбестоз; рак легких |
Мышьяк |
Промышленность |
Острые и хронические интоксикации; канцерогенез |
- Органические соединения естественного происхождения
Основными природными источниками органических соединений являются залежи угля, нефти, вулканическая деятельность. Помимо предельных и непредельных алифатических углеводородов, большое токсикологическое значение среди представителей группы имеют полициклические ароматические углеводороды (ПАУ).
Эти вещества также выделяются при неполном сгорании органических материалов и обнаруживаются в дыме при горении древесины, угля, нефти, табака, а также в каменноугольной смоле и жареной пище. Поскольку отдельные ПАУ являются канцерогенами, их рассматривают как опасные экотоксиканты.
^
Подавляющее большинство известных химических соединений получены синтетическим путем. Нет такой области деятельности, в ходе которой современный человек не контактировал бы с химическими веществами. Некоторые группы веществ, не смотря на их широчайшее использование, в силу высокой биологической активности, требуют особого внимания со стороны токсикологов. Это, прежде всего, пестициды, органические растворители, лекарства, токсичные компоненты различных производств, побочные продукты химического синтеза и т.д.
Пестициды — вещества, предназначенные для борьбы с животными- и растениями-вредителями с целью повышения урожайности и сохранения материальных ценностей, созданных человеком. В отличие от других поллютантов пестицидами умышленно обрабатывают окружающую среду для того, чтобы уничтожить некоторые виды живых организмов. Наиболее желательным свойством пестицидов, в этой связи, является избирательность их действия в отношении организмов-мишеней. Однако селективность действия подавляющего большинства пестицидов не является абсолютной, поэтому многие вещества представляют большую или меньшую опасность для человека. Основной риск, связанный с использованием пестицидов, обусловлен их накоплением в окружающей среде и биоте, перемещением по пищевым цепям, вплоть до человека. Достаточно часты случаи острого отравления пестицидами. Не изжиты хронические интоксикации у рабочих, занятых в производстве и использовании пестицидов. Поскольку организмы «вредителей» адаптируются к действию химических веществ, во всем мире постоянно синтезируются и внедряются в практику десятки и сотни новых соединений. Различные классы пестицидов представлены на таблице 2.2.
Таблица 2.2
Классы пестицидов
Классы |
Основные химические группы |
Альгициды |
оловоорганические соединения (брестар) |
Фунгициды |
Дикарбоксимиды (каптан) Хлорированные ароматические углеводороды (пентахлорфенол) дитиокарбаматы(манеб) соединения ртути (ацетат фенилртути) |
Гербициды |
амиды, ацетамиды (пропанил) бипиридилы (паракват) карбаматы, тиокарбаматы (барбан) феноксикислоты (2,4,-Д) динитрофенолы (динитрокрезол) динитроанилин (трифлюралин) производные мочевины (монурон) триазины (атразин) |
Нематоциды |
галогенированные алканы (этилен дибромид) |
Моллюскоциды |
хлорированные углеводороды (байлусцид) |
Инсектициды |
хлорированные углеводороды аналоги ДДТ (ДДТ) циклодиены (алдрин) хлорированные терпены (токсафен) фосфорорганические соединения (паратион) карбаматы (карбарил) тиоцианаты (летан) динитрофенолы (ДНОК) фторацетаты (ниссол) растительные яды никотин ротеноиды (ротенон) перитроиды (перитрин) аналоги гормонов роста (метопрен) производные мышьяка (арсенат свинца) фторсодержащие соединения (фторид натрия) |
Акарициды |
сероорганические соединения (овекс) формамидин (хлордимеформ) динитрофенолы (динекс) аналоги ДДТ (хлорбензилат) |
Родентициды |
антикоагулянты (варфарин) алкалоиды (стрихнин сульфат) фторсодержащие соединеня (фторацетат) производные тиомочевины (нафтилтиомочевина) соединения таллия (сульфат таллия) |
Самым известным хлорорганическим инсектицидом является ДДТ. Хотя это вещество синтезировано еще в 1874 году, его инсектицидные свойства были обнаружены лишь в 1939 году швейцарским химиком Паулем Мюллером, удостоенным за это открытие десять лет спустя Нобелевской премии. ДДТ широко использовался для борьбы с вредителями, однако сейчас, в силу отрицательных токсикологических свойств, запрещен к производству и применению в большинстве развитых стран. Среди других известных хлорорганических пестицидов следует назвать метоксихлор (близкий аналог ДДТ), мирекс, алдрин, хлордан, линдан.
Фосфорорганические инсектициды (ФОИ) представляют собой по большей части эфиры фосфорной и тиофосфорной кислот. В настоящее время это наиболее широко используемые пестициды. Они токсичнее хлорорганических инсектицидов, но менее стойки в окружающей среде и потому менее опасны с точки зрения экологии. Широкое исследование этих веществ началось в 1930х годах в лаборатории Герхарда Шрадера в Германии. Токсичность ФОС зависит от строения алкильных радикалов при атоме фосфора. Для млекопитающих и человека производные фосфорной кислоты значительно токсичнее, чем тиофосфорной. Для насекомых имеет место обратная зависимость. Среди наиболее известных ФОИ: паратион, диазинон, хлорофос, карбофос, дисульфотион, малатион. Среди ФОС обнаружены не только эффективные пестициды, но и вещества чрезвычайно токсичные для человека. Под руководством того же Шрадера на основе ФОС в 1940х годах были получены первые фосфорорганические боевые отравляющие вещества (ФОВ), в частности, табун. Все ФОС — нейротоксиканты, нарушающие проведение нервных импульсов в центральных и периферических холинэргических синапсах.
Гербициды — это вещества, предназначенные для борьбы с растениями, в частности, сорными травами. Динитрофенол, динитро-орто-крезол, пентахлорфенол используются, как контактные гербициды. Хлорфенолы применяют и как фунгициды для защиты древесины от поражения грибами. Печальную известность, после войны США против Вьетнама, получили производные феноксиуксусной кислоты (2,4-Д и 2,4,5-Т), входившие в состав так называемой «оранжевой смеси», использовавшейся американцами в качестве дефолианта. Эти вещества практически не токсичны для человека, однако, содержавшийся в качестве примеси 2,3,7,8,-тетрахлордибензодиоксин (ТХДД) вызывал поражение людей. Кроме того, это вещество обладает свойствами иммунотоксиканта, тератогена, мутагена и канцерогена. Другими известным гербицидами являются паракват, дикват, атразин и т.д.
- Органические растворители
Они используют повсеместно: на производствах, в сельском хозяйстве, в быту. К числу растворителей относятся вещества, с близкими физико-химическими свойствами. Это жидкости, плохо растворяющиеся в воде и хорошо в жирах, не диссоциирующие в водных растворах с образованием ионов. Последнее свойство послужило поводом для объединения их в группу под общим названием «неэлектролиты» (Н.В. Лазарев).
Для всех органических растворителей характерна близость токсикологических свойств: они угнетают функции центральной нервной системы (наркотическое действие).
Коммерческие растворители, как правило, представляют собой смесь соединений и включают азот- и серо-органические соединения, а также бензин и некоторые масла. Растворители используют для производства красителей, лаков, клеев и т.д. Поэтому отравления этими продуктами нередко обусловлены действием именно растворителей. Токсикоманическое пристратие к вдыханию клеев, также связано с привыканием к состоянию, формирующемуся вследствие действия органических растворителей на ЦНС.
- Лекарства, пищевые добавки, косметика
Количество лекарств, выпускаемых в мире, составляет десятки тысяч тон веществ многих сотен наименований. Практически любое лекарственное средство обладает токсичностью и при неправильном его использовании и у людей с повышенной чувствительностью может вызвать неблагоприятные эффекты. В настоящее время ни один медикамент не разрешается к применению до исчерпывающего изучения его переносимости (токсичности), определения оптимальных доз и схем использования по программам, утвержденным специальными государственными структурами («Фармакологический Комитет» в России, «Управление пищевых и лекарственных средств» в США).
Тем не менее, число отравленных лекарствами неизменно растет. Причиной тому наиболее часто является неконтролируемое со стороны врача использование препаратов, суицидные попытки. Первое место, как причина самоотравления, занимают психофармакологические средства, такие как барбитураты (барбитал, фенобарбитал), бензодиазепины (диазепам), трицыклические антидепрессанты (имипрамин) и т.д.
Иногда токсические последствия применения лекарства могут быть связаны с дефектом изучения его безопасности. Классическим примером является тератогенное действие талидомида, не выявленное на доклиническом этапе обследования препарата, и ставшее поводом большого числа человеческих трагедий. Количество лекарств, известных в настоящее время, огромно, многообразны эффекты, вызываемые ими. Раздел токсикологии, в рамках которого изучаются токсические эффекты, развивающиеся у людей, принимающих те или иные препараты, называется «лекарственная токсикология 3 «.
- Боевые отравляющие вещества (БОВ)
Мысль применить отравляющие газы для военных целей приписывают известному химику профессору Нернсту. Бурное развитие химической промышленности во второй половине века явилось материальной основой для реализации этой идеи. 22 апреля 1915 года с применения газообразного хлора войсками Германии началась эпоха использования современных средств массового уничтожения. В ходе Первой мировой войны было применено около 130 тысяч тонн высокотоксичных соединений примерно 40 наименований.
В годы 2-й Мировой войны химическое оружие применяли в крайне ограниченных масштабах. Тем не менее работы по созданию новых образцов ОВ не прекращались. В фашистской Германии, а позже и других странах, были созданы чрезвычайно токсичные фосфорорганические отравляющие вещества (ФОВ).
В качестве БОВ в различное время испытывались такие вещества как хлор, фосген, дифосген, хлорпикрин, мышьяковистый водород, синильная кислота, хлорциан, хлорбензилиденмалонодинитрил (СS), метиларсиндихлорид, 2-хлорвиниларсиндихлорид (люизит), дихлордиэтилсульфид (сернистый иприт), трихлортриэтиламин (азотистый иприт), изопропиловый эфир метилфторфосфоновой кислоты (зарин), этил S-2-диизопропил аминоэтил метилфосфонотиолат (VX) и многие, многие другие. 1993 году была принята Парижская «Конвенция о запрещении применения, разработки и накопления химического оружия». В настоящее время конвенцию подписали более 150 государств. В соответствии с принятыми документами в ближайшие годы предполагается уничтожить запасы химического оружия на планете.
Заключение
Сегодня, в начале нового века, когда человечество вступило в эру высоких технологий и информатизации, решение проблем формирования системной, гармоничной, отвечающей высоким духовным ценностям среды жизнедеятельности, стало как никогда ранее актуальным. Прошедший XX век стал веком углубляющегося экологического кризиса, веком столкновения природы и ее естественных законов развития с законами цивилизации, которые на сегодняшний день не обеспечивают должной охраны окружающей среды и экологической безопасности. Немалую роль в процессе деградации природной среды и ухудшения здоровья населения играет промышленное производство. Так, например в 2006 году показатели сброса в водные объекты выросли на 139 млн. куб.м. по сравнению с 2005 годом. Более четверти отраслевых выбросов вредных веществ приходится на предприятия, расположенные в Татарстане, Башкортостане, Мурманской области и т.д.
Полностью безотходные производства при современном уровне развития техники практически невозможны, а малоотходные нередко вводятся с опозданием. Многие химические вещества, попадающие в окружающую среду, не разлагаются на более простые безвредные продукты, а накапливаются в атмосфере, воде, почве и подчас преобразуются в их более токсичные компоненты. Большое число соединений, в особенности продукты неполного сгорания, попадая в биосферу, включаются в происходящие в ней процессы, и, подобно бумерангу, возвращаются к человеку, проникая через дыхательные пути, органы пищеварения или кожу. Попадая в организм из различных сред, химический агент может проявить свое действие на организм при сравнительно низких концентрациях в каждой из них. Многие вещества, обладающие кумулятивными свойствами, накапливаясь в организме, могут вызвать хронические отравления, а подчас канцерогенные, мутагенные, и другие отдаленные последствия, проявляющиеся через многие годы и даже в следующих поколениях.
Список литературы
[Электронный ресурс]//URL: https://psychoexpert.ru/kursovaya/sotsialnyie-toksikantyi/
-
Анофриков В.Е., Бобок С.А., Дудко М.Н., Елистратов Г.Д. Безопасность
жизнедеятельности: Учебное пособие. М: Финстатинформ, 1999.
-
Бадюгин И.С. Токсикология ядохимикатов. — Казань: Татарское книжное издательство, 1999. — 112 с.
-
Барышников И.И., Лойт А.О., Савченков М.Ф. Экологическая токсикология. 1 часть. 11 часть. — Изд. Иркутского университета, 2001. — 282 с.
-
Безопасность жизнедеятельности. Учебное пособие/Под ред. профессора О.Н. Русака/, Спб.: МАНЭБ, 1996.
-
Каспаров А.А., Саноцкий И.В. (Ред.).
Токсикометрия химических веществ, загрязняющих окружающую среду. — М.: Центр международных проектов ГКНТ, 2001. — 426 с.
-
Лазарев Н.В., Гадаскина И.Д. (Ред.).
Вредные вещества в промышленности. 111. Неорганические и элементорганические соединения. Справочник для химиков, инженеров и врачей. — Л.: Химия, 1997. — 607 с.
-
Оксигендлер Г.И. Яды и организм. Проблемы химической опасности. — СПб.: Наука, 1999. — 317 с.
-
Толоконцев Н.А., Филов В.А. (Ред.).
Основы промышленной токсикологии (руководство).
— Л.: Медицина, 2003. — 303 с.
-
Экология и безопасность жизнедеятельности. Учебное пособие под редакцией Л.А. Муравья, М., ЮНИТИ-Дана, 2000.