Физиология сенсорных систем

ФИЗИОЛОГИЯ СЕНСОРНЫХ СИСТЕМ

1. ОБЩАЯ ФИЗИОЛОГИЯ СЕНСОРНЫХ СИСТЕМ

Сенсорной системой (анализатором, по И.П. Павлову) называют часть нервной системы, состоящую из воспринимающих элементов — сенсорных рецепторов, получающих стимулы из внешней или внутренней среды, нервных путей, передающих информацию от рецепторов в мозг, и тех частей мозга, которые перерабатывают эту информацию. Таким образом, сенсорная система вводит информацию в мозг и анализирует ее. Работа любой сенсорной системы начинается с восприятия рецепторами внешней для мозга физической или химической энергии, трансформации ее в нервные сигналы и передачи их в мозг через цепи нейронов. Процесс передачи сенсорных сигналов сопровождается многократным их преобразованием и перекодированием и завершается высшим анализом и синтезом (опознанием образа), после чего формируется ответная реакция организма.

Информация, поступающая в мозг, необходима для простых и сложных рефлекторных актов вплоть до психической деятельности человека. И.М. Сеченов писал, что «психический акт не может явиться в сознании без внешнего чувственного возбуждения». Переработка сенсорной информации может сопровождаться, но может и не сопровождаться осознанием стимула. Если осознание происходит, говорят об ощущении. Понимание ощущения приводит к восприятию.

{периферический отдел анализатора),

1.1 Методы исследования сенсорных систем

Для изучения сенсорных систем используют электрофизиологические, нейрохимические, поведенческие и морфологические исследования на животных, психофизиологический анализ восприятия у здорового и больного человека, методы картирования его мозга. Сенсорные функции также моделируют и протезируют.

Моделирование, Протезирование

1.2 Общие принципы строения сенсорных систем

Основными общими принципами построения сенсорных систем высших позвоночных животных и человека являются следующие:

1) многослойность, т. е. наличие нескольких слоев нервных клеток, первый из которых связан с рецепторами, а последний —с нейронами моторных областей коры большого мозга. Это свойство дает возможность специализировать нейронные слои на переработке разных видов сенсорной информации, что позволяет организму быстро реагировать на простые сигналы, анализируемые уже на первых уровнях сенсорной системы. Создаются также условия для избирательного регулирования свойств нейронных слоев путем восходящих влияний из других отделов мозга;

17 стр., 8373 слов

Сенсорные системы человека

... сигнала. - Кодированием информации называют совершаемое по определенным правилам преобразование информации в условную форму - код. В сенсорной системе сигналы ... сенсорных систем. Окончательная переработка информации о действующем стимуле происходит в сенсорных областях коры. Каждая сенсорная система образует связи с разнообразными структурами моторных и интегративных систем мозга. Сенсорные системы ...

2) многоканальность сенсорной системы, т. е. наличие в каждом слое множества (от десятков тысяч до миллионов) нервных клеток, связанных с множеством клеток следующего слоя. Наличие множества таких параллельных каналов обработки и передачи информации обеспечивает сенсорной системе точность и детальность анализа сигналов и большую надежность;

  • («суживающаяся воронка»).

«расширяющаяся воронка»:

1.3 Основные функции сенсорной системы

Сенсорная система выполняет следующие основные функции, или операции, с сигналами: 1) обнаружение; 2) различение; 3) передачу и преобразование; 4) кодирование; 5) детектирование признаков; 6) опознание образов. Обнаружение и первичное различение сигналов обеспечивается рецепторами, а детектирование и опознание сигналов — нейронами коры больших полушарий. Передачу, преобразование и кодирование сигналов осуществляют нейроны всех слоев сенсорных систем.

Обнаружение сигналов., Классификация рецепторов.

(экстерорецепторы)

дистантные,

В зависимости от природы раздражителя, на который они оптимально настроены, рецепторы могут быть разделены на фоторецепторы, механорецепторы, к которым относятся слуховые, вестибулярные рецепторы, и тактильные рецепторы кожи, рецепторы опорно-двигательного аппарата, барорецепторы сердечно-сосудистой системы; хеморецепторы, включающие рецепторы вкуса и обоняния, сосудистые и тканевые рецепторы; терморецепторы (кожи и внутренних органов, а также центральные термочувствительные нейроны); болевые (ноцицептивные) рецепторы.

первично-чувствующие

Общие механизмы возбуждения рецепторов.

Абсолютную чувствительность сенсорной системы измеряют порогом реакции. Чувствительность и порог — обратные понятия: чем выше порог, тем ниже чувствительность, и наоборот. Обычно принимают за пороговую такую силу стимула, вероятность восприятия которого равна 0,5 или 0,75 (правильный ответ о наличии стимула в половине или в 3 /4 случаев его действия).

Более низкие значения интенсивности считаются подпороговыми, а более высокие — надпороговыми. Оказалось, что и в подпороговом диапазоне реакция на сверхслабые раздражители возможна, но она неосознаваема (не доходит до порога ощущения).

Так, если снизить интенсивность вспышки света настолько, что человек уже не может сказать, видел он ее или нет, от его руки можно зарегистрировать неощущаемую кожно-гальваническую реакцию на данный сигнал.

Чувствительность рецепторных элементов к адекватным раздражителям, к восприятию которых они эволюционно приспособлены, предельно высока. Так, обонятельный рецептор может возбудиться при действии одиночной молекулы пахучего вещества, фоторецептор — одиночным квантом света. Чувствительность слуховых рецепторов также предельна: если бы она была выше, мы слышали бы постоянный шум из-за теплового движения молекул.

Различение сигналов.

dl/I= const

где I — сила раздражения, dl — ее едва ощущаемый прирост (порог различения), const — постоянная величина (константа).

Аналогичные соотношения получены для зрения, слуха и других органов чувств человека.

Зависимость силы ощущения от силы раздражения (закон Вебера—Фехнера) выражается формулой:

10 стр., 4520 слов

Слуховая сенсорная система

... и первичное различение сигналов обеспечивается рецепторами, а детектирование и опознание сигналов - нейронами коры больших полушарий. Передачу, преобразование и кодирование сигналов осуществляют нейроны всех слоев сенсорных систем. Обнаружение сигналов., Классификация рецепторов. Существуют рецепторы внешние (экстерорецепторы) ...

E=a•logI +b

где Е — величина ощущения, I — сила раздражения, а и b — константы, различные для разных модальностей стимулов. Согласно этой формуле, ощущение увеличивается пропорционально логарифму интенсивности раздражения.

Выше упоминалось о различении силы раздражителей. Пространственное различение основано на распределении возбуждения в слое рецепторов и в нейронных слоях. Так, если два раздражителя возбудили два соседних рецептора, то различение этих раздражителей невозможно и они будут восприняты как единое целое. Необходимо, чтобы между двумя возбужденными рецепторами находился хотя бы один невозбужденный. Для временного различения двух раздражений необходимо, чтобы вызванные ими нервные процессы не сливались во времени и чтобы сигнал, вызванный вторым стимулом, не попадал в рефрактерный период от предыдущего раздражения.

Передача и преобразование сигналов.

пространственных преобразований

Для временных преобразований информации во всех сенсорных системах типично сжатие, временная компрессия сигналов: переход от длительной (тонической) импульсации нейронов на нижних уровнях к коротким (фазическим) разрядам нейронов высоких уровней.

Ограничение избыточности информации и выделение существенных признаков сигналов.

Кодирование информации. Кодированием называют совершаемое по определенным правилам преобразование информации в условную форму — код. В сенсорной системе сигналы кодируются двоичным кодом, т. е. наличием или отсутствием электрического импульса в тот или иной момент времени. Такой способ кодирования крайне прост и устойчив к помехам. Информация о раздражении и его параметрах передается в виде отдельных импульсов, а также групп или «пачек» импульсов («залпов» импульсов).

Амплитуда, длительность и форма каждого импульса одинаковы, но число импульсов в пачке, частота их следования, длительность пачек и интервалов между ними, а также временной «рисунок» пачки различны и зависят от характеристик стимула. Сенсорная информация кодируется также числом одновременно возбужденных нейронов, а также местом возбуждения в нейронном слое.

Особенности кодирования в сенсорных системах.

Для периферических отделов сенсорной системы типично временное кодирование признаков раздражителя, а на высших уровнях происходит переход к преимущественно пространственному (в основном позиционному) коду.

Детектирование сигналов., Опознание образов.

Опознание часто происходит независимо от изменчивости сигнала. Мы надежно опознаем, например, предметы при различной их освещенности, окраске, размере, ракурсе, ориентации и положении в поле зрения. Это означает, что сенсорная система формирует независимый от изменений ряда признаков сигнала (инвариантный) сенсорный образ.

Рис. 1. Проекционное (А), рецептивное (Б) поля нейрона и нервная сеть (В) (схема).

Стрелкой показано направление потока импульсов. 1 —5 — возбужденные нейроны в последовательных слоях

1.4 Механизмы переработки информации в сенсорной системе

Переработку информации в сенсорной системе осуществляют процессы возбудительного и тормозного межнейронного взаимодействия. Возбудительное взаимодействие заключается в том, что аксон каждого нейрона, приходя в вышележащий слой сенсорной системы, контактирует с несколькими нейронами, каждый из которых получает сигналы от нескольких клеток предыдущего слоя.

11 стр., 5495 слов

Анализаторы виды, структура. Сенсорные системы человека

... в мозге, а не в глазу. Понятие сенсорная система шире, чем анализатор. Она включает в себя дополнительные приспособления, системы настройки и системы саморегуляции. Сенсорная система предусматривает обратную связь между ... их широком понимании анализаторами. При помощи органов чувств человек получает всестороннюю информацию о внешнем мире, изучает и познает его, формирует объективные представления об ...

рецептивным полем.

Тормозная переработка сенсорной информации основана на том, что обычно каждый возбужденный сенсорный нейрон активирует тормозный интернейрон. Интернейрон в свою очередь подавляет импульсацию как самого возбудившего его элемента (последовательное, или возвратное, торможение), так и его соседей по слою (боковое, или латеральное, торможение).

Сила этого торможения тем больше, чем сильнее возбужден первый элемент и чем ближе к нему соседняя клетка. Значительная часть операций по снижению избыточности и выделению наиболее существенных сведений о раздражителе производится латеральным торможением.

1.5 Адаптация сенсорной системы

Сенсорная система обладает способностью приспосабливать свои свойства к условиям среды и потребностям организма. Сен сорная адаптация — общее свойство сенсорных систем, заключающееся в приспособлении к длительно действующему (фоновому) раздражителю. Адаптация проявляется в снижении абсолютной и повышении дифференциальной чувствительности сенсорной системы. Субъективно адаптация проявляется в привыкании к действию постоянного раздражителя (например, мы не замечаем непрерывного давления на кожу привычной одежды).

Адаптационные процессы начинаются на уровне рецепторов, охватывая и все нейронные уровни сенсорной системы. Адаптация слаба только в вестибуло- и проприорецепторах. По скорости данного процесса все рецепторы делятся на быстро- и медленно адаптирующиеся. Первые после развития адаптации практически не посылают в мозг информации о длящемся раздражении. Вторые эту информацию передают в значительно ослабленном виде. Когда действие постоянного раздражителя прекращается, абсолютная чувствительность сенсорной системы восстанавливается. Так, в темноте абсолютная чувствительность зрения резко повышается.

В сенсорной адаптации важную роль играет эфферентная регуляция свойств сенсорной системы. Она осуществляется за счет нисходящих влияний более высоких на более низкие ее отделы. Происходит как бы перенастройка свойств нейронов на оптимальное восприятие внешних сигналов в изменившихся условиях. Состояние разных уровней сенсорной системы контролируется также ретикулярной формацией, включающей их в единую систему, интегрированную с другими отделами мозга и организма в целом. Эфферентные влияния в сенсорных системах чаще всего имеют тормозной характер, т. е. приводят к уменьшению их чувствительности и ограничивают поток афферентных сигналов.

Общее число эфферентных нервных волокон, приходящих к рецепторам или элементам какого-либо нейронного слоя сенсорной системы, как правило, во много раз меньше числа афферентных нейронов, приходящих к тому же слою. Это определяет важную особенность эфферентного контроля в сенсорных системах: его широкий и диффузный характер. Речь идет об общем снижении чувствительности значительной части нижележащего нейронного слоя.

1.6 Взаимодействие сенсорных систем

Взаимодействие сенсорных систем осуществляется на спинальном, ретикулярном, таламическом и корковом уровнях. Особенно широка интеграция сигналов в ретикулярной формации. В коре большого мозга происходит интеграция сигналов высшего порядка. В результате образования множественных связей с другими сенсорными и неспецифическими системами многие корковые нейроны приобретают способность отвечать на сложные комбинации сигналов разной модальности. Это особенно свойственно нервным клеткам ассоциативных областей коры больших полушарий, которые обладают высокой пластичностью, что обеспечивает перестройку их свойств в процессе непрерывного обучения опознанию новых раздражителей. Межсенсорное (кроссмодальное) взаимодействие на корковом уровне создает условия для формирования «схемы (или карты) мира» и непрерывной увязки, координации с ней собственной «схемы тела» организма.

4 стр., 1960 слов

Сенсорная адаптация. Сенсобилизация и синестезия. Ориентация в пространстве

... а затем чувствительность глаза постепенно снижается. Это приспособление зрительной сенсорной системы к условиям яркой освещенности называется световой адаптацией. Обратное явление (темновая адаптация} наблюдается при переходе ... для наведения на рассматриваемый объект. На пути к светочувствительной оболочке глаза (сетчатке) лучи света проходят через несколько прозрачных сред — роговицу, хрусталик и ...

2. ЗРИТЕЛЬНАЯ СИСТЕМА

Зрение эволюционно приспособлено к восприятию электромагнитных излучений в определенной, весьма узкой части их диапазона (видимый свет).

Зрительная система дает мозгу более 90% сенсорной информации. Зрение — многозвеньевой процесс, начинающийся с проекции изображения на сетчатку уникального периферического оптического прибора — глаза. Затем происходят возбуждение фоторецепторов, передача и преобразование зрительной информации в нейронных слоях зрительной системы, а заканчивается зрительное восприятие принятием высшими корковыми отделами этой системы решения о зрительном образе.

Строение и функции оптического аппарата глаза. Глазное яблоко имеет шарообразную форму, что облегчает его повороты для наведения на рассматриваемый объект. На пути к светочувствительной оболочке глаза (сетчатке) лучи света проходят через несколько прозрачных сред — роговицу, хрусталик и стекловидное тело. Определенная кривизна и показатель преломления роговицы и в меньшей мере хрусталика определяют преломление световых лучей внутри глаза.

Преломляющую силу любой оптической системы выражают в диоптриях (D).

Одна диоптрия равна преломляющей силе линзы с фокусным расстоянием 100 см. Преломляющая сила здорового глаза составляет 59D при рассматривании далеких и 70.5D — при рассматривании близких предметов. Чтобы схематически представить проекцию изображения предмета на сетчатку, нужно провести линии от его концов через узловую точку (в 7 мм сзади от роговой оболочки).

На сетчатке получается изображение, резко уменьшенное и перевернутое вверх ногами и справа налево.

Аккомодация. Аккомодацией называют приспособление глаза к ясному видению объектов, удаленных на разное расстояние. Для ясного видения объекта необходимо, чтобы он был сфокусирован на сетчатке, т. е. чтобы лучи от всех точек его поверхности проецировались на поверхность сетчатки. Когда мы смотрим на далекие предметы (А), их изображение (а) сфокусировано на сетчатке и они видны ясно. Зато изображение (б) близких предметов (Б) при этом расплывчато, так как лучи от них собираются за сетчаткой. Главную роль в аккомодации играет хрусталик, изменяющий свою кривизну и, следовательно, преломляющую способность. При рассматривании близких предметов хрусталик делается более выпуклым, благодаря чему лучи, расходящиеся от какой-либо точки объекта, сходятся на сетчатке. Механизмом аккомодации является сокращение ресничных мышц, которые изменяют выпуклость хрусталика. Хрусталик заключен в тонкую прозрачную капсулу, которую всегда растягивают, т. е. уплощают, волокна ресничного пояска (циннова связка).

5 стр., 2181 слов

Синдром сухого глаза

... стрелка) Патофизиология нарушения состояния слезной пленки при синдроме " сухого глаза " Недостаточность слизистого слоя СП Общеизвестно , что нормальная деятельность бокаловидных клеток (КК ) непосредственно связана с витамином ... 15 мм / 5 мин - слезопродукции не нарушена Рис. 5 Глаз пациента с синдромом "сухого глаза" окрашены 1%-ным раствором бенгальского- розового: а - зона пораженного эпителия ...

Сокращение гладких мышечных клеток ресничного тела уменьшает тягу цинновых связок, что увеличивает выпуклость хрусталика в силу его эластичности. Ресничные мышцы иннервируются парасимпатическими волокнами глазодвигательного нерва. Введение в глаз атропина вызывает нарушение передачи возбуждения к этой мышце, ограничивает аккомодацию глаза при рассматривании близких предметов. Наоборот, парасимпатомиметические вещества — пилокарпин и эзерин — вызывают сокращение этой мышцы.

Для нормального глаза молодого человека дальняя точка ясного видения лежит в бесконечности. Далекие предметы он рассматривает без всякого напряжения аккомодации, т. е. без сокращения ресничной мышцы. Ближайшая точка ясного видения находится на расстоянии 10 см от глаза.

Старческая дальнозоркость., Аномалии рефракции глаза.

Близорукость. Если продольная ось глаза слишком длинная, то лучи от далекого объекта сфокусируются не на сетчатке, а перед ней, в стекловидном теле. Такой глаз называется близоруким, или миопическим. Чтобы ясно видеть вдаль, необходимо перед близорукими глазами поместить вогнутые стекла, которые отодвинут сфокусированное изображение на сетчатку.

Дальнозоркость. Противоположна близорукости дальнозоркость, или гиперметропия. В дальнозорком глазу продольная ось глаза укорочена, и поэтому лучи от далекого объекта фокусируются не на сетчатке, а за ней. Этот недостаток рефракции может быть компенсирован аккомодационным усилием, т.е. увеличением выпуклости хрусталика. Поэтому дальнозоркий человек напрягает аккомодационную мышцу, рассматривая не только близкие, но и далекие объекты. При рассматривании близких объектов аккомодационные усилия дальнозорких людей недостаточны.

Поэтому для чтения дальнозоркие люди должны надевать очки с двояковыпуклыми линзами, усиливающими преломление света. Гиперметропию не следует путать со старческой дальнозоркостью. Общее у них лишь то, что необходимо пользоваться очками с двояковыпуклыми линзами.

Астигматизм. К аномалиям рефракции относится также астигматизм, т. е. неодинаковое преломление лучей в разных направлениях (например, по горизонтальному и вертикальному меридиану).

Астигматизм обусловлен не строго сферической поверхностью роговой оболочки. При астигматизме сильных степеней эта поверхность может приближаться к цилиндрической, что исправляется цилиндрическими очковыми стеклами, компенсирующими недостатки роговицы.

Зрачок и зрачковый рефлекс. Зрачком называют отверстие в центре радужной оболочки, через которое лучи света проходят внутрь глаза. Зрачок повышает четкость изображения на сетчатке, увеличивая глубину резкости глаза. Пропуская только центральные лучи, он улучшает изображение на сетчатке также за счет устранения сферической аберрации. Если прикрыть глаз от света, а затем открыть его, то расширившийся при затемнении зрачок быстро сужается («зрачковый рефлекс»).

Мышцы радужной оболочки изменяют величину зрачка, регулируя поток света, попадающий в глаз. Так, на очень ярком свету зрачок имеет минимальный диаметр (1,8 мм), при средней дневной освещенности он расширяется (2,4 мм), а в темноте расширение максимально (7,5 мм).

7 стр., 3013 слов

Сенсорные зрительные расстройства

... или звеньев, зрительной системы характеризуется особыми зрительными симптомами, особыми нарушениями зрительных функций. Первый уровень зрительной системы - сетчатка глаза - представляет ... спинного мозга и таламуса к первичной сенсорной зоне коры (по Ф. Блуму, А. ... Рис. 21. Когда зрительная информация, получаемая ганглиозными клетками сетчатки, передается первичной зрительной коре, она распределяется ...

Это приводит к ухудшению качества изображения на сетчатке, но увеличивает чувствительность зрения. Предельное изменение диаметра зрачка изменяет его площадь примерно в 17 раз. Во столько же раз меняется при этом световой поток. Между интенсивностью освещения и диаметром зрачка имеется логарифмическая зависимость. Реакция зрачка на изменение освещенности имеет адаптивный характер, так как в небольшом диапазоне стабилизирует освещенность сетчатки.

В радужной оболочке имеется два вида мышечных волокон, окружающих зрачок: кольцевые (m. sphincter iridis), иннервируемые парасимпатическими волокнами глазодвигательного нерва, а также радиальные (m. dilatator iridis), иннервируемые симпатическими нервами. Сокращение первых вызывает сужение, сокращение вторых — расширение зрачка. Соответственно этому ацетилхолин и эзерин вызывают сужение, а адреналин — расширение зрачка. Зрачки расширяются во время боли, при гипоксии, а также при эмоциях, усиливающих возбуждение симпатической системы (страх, ярость).

Расширение зрачков — важный симптом ряда патологических состояний, например болевого шока, гипоксии.

У здоровых людей размеры зрачков обоих глаз одинаковые. При освещении одного глаза зрачок другого тоже суживается; такая реакция называется содружественной. В некоторых патологических случаях размеры зрачков обоих глаз различны (анизокория).

Структура и функции сетчатки. Сетчатка представляет собой внутреннюю светочувствительную оболочку глаза. Она имеет сложную многослойную структуру.

нервный аппарат глаза,

Место выхода зрительного нерва из глазного яблока — диск зрительного нерва, называют слепым пятном. Оно не содержит фоторецепторов и поэтому нечувствительно к свету. Мы не ощущаем наличия «дыры» в сетчатке.

Рассмотрим структуру и функции слоев сетчатки, следуя от наружного (заднего, наиболее удаленного от зрачка) слоя сетчатки к внутреннему (расположенному ближе к зрачку) ее слою.

Пигментный слой. Этот слой образован одним рядом эпителиальных клеток, содержащих большое количество различных внутриклеточных органелл, включая меланосомы, придающие этому слою черный цвет. Этот пигмент, называемый также экранирующим пигментом, поглощает доходящий до него свет, препятствуя тем самым его отражению и рассеиванию, что способствует четкости зрительного восприятия. Клетки пигментного эпителия имеют многочисленные отростки, которые плотно окружают светочувствительные наружные сегменты палочек и колбочек, Пигментный эпителий играет решающую роль в целом ряде функций, в том числе в ресинтезе (регенерации) зрительного пигмента после его обесцвечивания, в фагоцитозе и переваривании обломков наружных сегментов палочек и колбочек, иными словами, в механизме постоянного обновления наружных сегментов зрительных клеток, в защите зрительных клеток от опасности светового повреждения, а также в переносе к фоторецепторам кислорода и других необходимых им веществ. Следует отметить, что контакт между клетками пигментного эпителия и фоторецепторами достаточно слабый. Именно в этом месте происходит отслойка сетчатки — опасное заболевание глаз. Отслойка сетчатки приводит к нарушению зрения не только вследствие ее смещения с места оптического фокусирования изображения, но и вследствие дегенерации рецепторов из-за нарушения контакта с пигментным эпителием, что приводит к серьезнейшему нарушению метаболизма самих рецепторов. Метаболические нарушения усугубляются тем, что нарушается доставка питательных веществ из капилляров сосудистой оболочки глаза, а сам слой фоторецепторов капилляров не содержит (аваскуляризован).

8 стр., 3732 слов

Психофизиология зрительного процесса

... зрения, структурно-функциональную характеристику зрительного анализатора, механизмы, обеспечивающие ясное видение в различных условиях и феномен цветового зрения. Глава1. Строение и функции оптического аппарата глаза Орган зрения (глаз) ... наружных сегментов. 2.2 Фотохимические процессы в сетчатке глаза В рецепторных клетках сетчатки находятся светочувствительные пигменты (сложные белковые вещества) ...

Фоторецепторы. К пигментному слою изнутри примыкает слой фоторецепторов: палочек и колбочек 1 . В сетчатке каждого глаза человека находится 6—7 млн колбочек и 110—123 млн палочек. Они распределены в сетчатке неравномерно. Центральная ямка сетчатки (fovea centralis) содержит только колбочки (до 140 тыс. на 1 мм2 ).

По направлению к периферии сетчатки их число уменьшается, а число палочек возрастает, так что на дальней периферии имеются только палочки. Колбочки функционируют в условиях больших освещенностей, они обеспечивают дневное . и цветовое зрение; намного более светочувствительные палочки ответственны за сумеречное зрение. сенсорный нервный зрительный строение

Цвет воспринимается лучше всего при действии света на центральную ямку сетчатки, где расположены почти исключительно колбочки. Здесь же и наибольшая острота зрения. По мере удаления от центра сетчатки восприятие цвета и пространственное разрешение становятся все хуже. Периферия сетчатки, где находятся исключительно палочки, не воспринимает цвета. Зато световая чувствительность колбочкового аппарата сетчатки во много раз меньше, чем палочкового, поэтому в сумерках из-за резкого понижения «колбочкового» зрения и преобладания «периферического» зрения мы не различаем цвет («ночью все кошки серы»).

Нарушение функции палочек, возникающее при недостатке в пище витамина А, вызывает расстройство сумеречного зрения — так называемую куриную слепоту: человек совершенно слепнет в сумерках, но днем зрение остается нормальным. Наоборот, при поражении» колбочек возникает светобоязнь: человек видит при слабом» свете, но слепнет при ярком освещении. В этом случае может развиться и полная цветовая слепота — ахромазия.

Строение фоторецепторной клетки.

1 Согласно Международной гистологической номенклатуре фоторецепторы подразделяются на палочковые (neurosensorius bacillifer) и колбочковые (neurosen-sorius conifer) нейросенсорвые клетки, наружные сегменты которых имеют соответственно палочковидную или колбочковидную форму и образуют фотосенсорный слой палочек и колбочек сетчатки. В данном разделе термины «палочки» и «колбочки» применяются для обозначения соответствующих фоторецепторов. — Примеч. ред.

Фоторецепторный диск образован двумя мембранами, соединенными по краям. Мембрана диска — это типичная биологическая мембрана, образованная двойным слоем молекул фосфолипидов, между которыми находятся молекулы белка. Мембрана диска богата полиненасыщенными жирными кислотами, что обусловливает ее низкую вязкость. В результате этого молекулы белка в ней быстро вращаются и медленно перемещаются вдоль диска. Это позволяет белкам часто сталкиваться и при взаимодействии образовывать на короткое время функционально важные комплексы.

Внутренний сегмент фоторецептора соединен с наружным сегментом модифицированной ресничкой, которая содержит девять пар микротрубочек. Внутренний сегмент содержит крупное ядро и весь метаболический аппарат клетки, в том числе митохондрии, обеспечивающие энергетические потребности фоторецептора, и систему белкового синтеза, обеспечивающую обновление мембран наружного сегмента. Здесь происходят синтез и включение молекул зрительного пигмента в фоторецепторную мембрану диска. За час на границе внутреннего и наружного сегмента в среднем заново образуется три новых диска. Затем они медленно (у человека примерно в течение 2—3 нед) перемещаются от основания наружного сегмента палочки к его верхушке, В конце концов верхушка наружного сегмента, содержащая до сотни теперь уже старых дисков, обламывается и фагоцитируется клетками пигментного слоя. Это один из важнейших механизмов защиты фоторецепторных клеток от накапливающихся в течение их световой жизни молекулярных дефектов.

3 стр., 1205 слов

Физиология нервных клеток

... нейронах возбудимость различных участков мембраны неодинакова. В области начального сегмента нервной клетки (аксонного холмика и начальной немиелинизированной части аксона) имеется ... https://psychoexpert.ru/referat/stroenie-nervnoy-kletki/ трофическими процессами - 3. Глиальные клетки питания нервных клеток Глиальные клетки обладают способностью перемещаться в пространстве по направлению к ...

Наружные сегменты колбочек также постоянно обновляются, но с меньшей скоростью. Интересно, что существует суточный ритм обновления: верхушки наружных сегментов палочек в основном обламываются и фагоцитируются в утреннее и дневное время, а колбочек — в вечернее и ночное.

Пресинаптическое окончание рецептора содержит синаптическую ленту, вокруг которой много синаптических пузырьков, содержащих глутамат.

Зрительные пигменты., Молекулярная физиология фоторецепции.

В результате этого молекула зрительного пигмента приобретает способность к взаимодействию с другим белком — примембранным гуанозинтрифосфат-связывающим белком трансдуцином (Т).

В комплексе с метародопсином II трансдуцин переходит в активное состояние и обменивает связанный с ним в темноте гуанозиндифосфат (ГДФ) на гуанозинтрифосфат (ГТФ).

Метародопсин II способен активировать около 500—1000 молекул трансдуцина, что приводит к усилению светового сигнала.

Каждая активированная молекула трансдуцина, связанная с молекулой ГТФ, активирует одну молекулу другого примембранного белка — фермента фосфодиэстеразы (ФДЭ).

Активированная ФДЭ с высокой скоростью разрушает молекулы циклического гуа-нозинмонофосфата (цГМФ).

Каждая активированная молекула ФДЭ разрушает несколько тысяч молекул цГМФ — это еще один этап усиления сигнала в механизме фоторецепции. Результатом всех описанных событий, вызванных поглощением кванта света, становится падение концентрации свободного цГМФ в цитоплазме наружного сегмента рецептора. Это в свою очередь приводит к закрытию ионных каналов в плазматической мембране наружного сегмента, которые были открыты в темноте и через которые внутрь клетки входили Na + и Са2+ . Ионный канал закрывается вследствие того, что из-за падения концентрации свободного цГМФ в клетке от канала отходят молекулы цГМФ, которые были связаны с ним в темноте и держали его открытым.

Уменьшение или прекращение входа внутрь наружного сегмента Na + приводит к гиперполяризации клеточной мембраны, т. е. возникновению на ней рецепторного потенциала. Градиенты концентрации Na+ и К+ поддерживаются на плазматической мембране палочки активной работой натрий-калиевого насоса, локализованного в мембране внутреннего сегмента.

Гиперполяризационный рецепторный потенциал, возникший на мембране наружного сегмента, распространяется затем вдоль клетки до ее пресинаптического окончания и приводит к уменьшению скорости выделения медиатора (глутамата).

Таким образом, фоторецепторный процесс завершается уменьшением скорости выделения нейромедиатора из пресинаптического окончания фоторецептора.

Не менее сложен и совершенен механизм восстановления исходного темнового состояния фоторецептора, т. е. его способности ответить на следующий световой стимул. Для этого необходимо вновь открыть ионные каналы в плазматической мембране. Открытое состояние канала обеспечивается его связью с молекулами цГМФ, что в свою очередь непосредственно обусловлено повышением концентрации свободного цГМФ в цитоплазме. Это повышение концентрации обеспечивается утратой метародопсином II способности взаимодействовать с трансдуцином и активацией фермента гуанилатциклазы (ГЦ), способного синтезировать цГМФ из ГТФ. Активацию этого фермента вызывает падение концентра ции в цитоплазме свободного кальция из-за закрытия ионного канала мембраны и постоянной работы белка-обменника, выбрасывающего кальций из клетки. В результате всего этого концентрация цГМФ внутри клетки повышается и цГМФ вновь связывается с ионным каналом плазматической мембраны, открывая его. Через открытый канал внутрь клетки вновь начинают входить Na + и Са2+ , деполяризуя мембрану рецептора и переводя его в «темновое» состояние. Из пресинаптического окончания деполяризованного рецептора вновь ускоряется выход медиатора.

Нейроны сетчатки. Фоторецепторы сетчатки синаптически связаны с биполярными нейронами. При действии света уменьшается выделение медиатора (глутамата) из фоторецептора, что приводит к гиперполяризации мембраны биполярного нейрона. От него нервный сигнал передается на ганглиозные клетки, аксоны которых являются волокнами зрительного нерва. Передача сигнала как с фоторецептора на биполярный нейрон, так и от него на ганглиозную клетку происходит безымпульсным путем. Биполярный нейрон не генерирует импульсов ввиду предельно малого расстояния, на которое он передает сигнал.

На 130 млн фоторецепторных клеток приходится только 1 млн 250 тыс. ганглиозных клеток, аксоны которых образуют зрительный нерв. Это значит, что импульсы от многих фоторецепторов сходятся (конвергируют) через биполярные нейроны к одной ганглиозной клетке. Фоторецепторы, соединенные с одной ганглиозной клеткой, образуют рецептивное поле ганглиозной клетки. Рецептивные поля различных ганглиозных клеток частично перекрывают друг друга. Таким образом, каждая ганглиозная клетка суммирует возбуждение, возникающее в большом числе фоторецепторов. Это повышает световую чувствительность, но ухудшает пространственное разрешение. Лишь в центре сетчатки, в районе центральной ямки, каждая колбочка соединена с одной так называемой карликовой биполярной клеткой, с которой соединена также всего одна ганглиозная клетка. Это обеспечивает здесь высокое пространственное разрешение, но резко уменьшает световую чувствительность.

Взаимодействие соседних нейронов сетчатки обеспечивается горизонтальными и амакриновыми клетками, через отростки которых распространяются сигналы, меняющие синаптическую передачу между фоторецепторами и биполярными клетками (горизонтальные клетки) и между биполярными и ганглиозными клетками (амакриновые клетки).

Амакриновые клетки осуществляют боковое торможение между соседними ганглиозными клетками.

Кроме афферентных волокон, в зрительном нерве есть и центробежные, или эфферентные, нервные волокна, приносящие к сетчатке сигналы из мозга. Полагают, что эти импульсы действуют на синапсы между биполярными и ганлиозными клетками сетчатки, регулируя проведение возбуждения между ними.

Нервные пути и связи в зрительной системе. Из сетчатки зрительная информация по волокнам зрительного нерва (II пара черепных нервов) устремляется в мозг. Зрительные нервы от каждого глаза встречаются у основания мозга, где формируется их частичный перекрест (хиазма).

Здесь часть волокон каждого зрительного нерва переходит на противоположную от своего глаза сторону. Частичный перекрест волокон обеспечивает каждое полушарие большого мозга информацией от обоих глаз. Проекции эти организованы так, что в затылочную долю правого полушария поступают сигналы от правых половин каждой сетчатки, а в левое полушарие — от левых половин сетчаток.

После зрительного перекреста зрительные нервы называют зрительными трактами. Они проецируются в ряд мозговых структур, но основное число волокон приходит в таламический подкорковый зрительный центр — латеральное, или наружное, коленчатое тело ( НКТ).

Отсюда сигналы поступают в первичную проекционную область зрительной зоны коры (стиарная кора, или поле 17 по Бродману).

Вся зрительная зона коры включает несколько полей, каждое из которых обеспечивает свои, специфические функции, но получает сигналы от всей сетчатки и в общем сохраняет ее топологию, или ретинотопию (сигналы от соседних участков сетчатки попадают в соседние участки коры).

Электрическая активность центров зрительной системы.

Суммарный электрический ответ сетчатки глаза на действие света называют электроретинограммой (ЭРГ).

Она может быть зарегистрирована от целого глаза или непосредственно от сетчатки. Для этого один электрод помещают на поверхность роговой оболочки, а другой — на коже лица вблизи глаза либо на мочку уха. На электроретинограмме различают несколько характерных волн. Волна а отражает возбуждение внутренних сегментов фоторецепторов (поздний рецепторный потенциал) и горизонтальных клеток. Волна b возникает в результате активации глиальных (мюллеровских) клеток сетчатки ионами калия, выделяющимися при возбуждении биполярных и амакриновых нейронов. Волна с отражает активацию клеток пигментного эпителия, а волна d — горизонтальных клеток.

На ЭРГ хорошо отражаются интенсивность, цвет, размер и длительность действия светового раздражителя. Амплитуда всех волн ЭРГ увеличивается пропорционально логарифму силы света и времени, в течение которого глаз находился в темноте. Волна d (реакция на выключение) тем больше, чем дольше действовал свет. Поскольку в ЭРГ отражена активность почти всех клеток сетчатки (кроме ганглиозных), этот показатель широко используется в клинике глазных болезней для диагностики и контроля лечения при различных заболеваниях сетчатки.

Возбуждение ганглиозных клеток сетчатки приводит к тому, что по их аксонам (волокнам зрительного нерва) в мозг устрем ляются импульсы. Ганглиозная клетка сетчатки — это первый нейрон «классического» типа в цепи фоторецептор — мозг. Описано три основных типа ганглиозных клеток: отвечающие на включение (on-реакция), на выключение (off-реакция) света и на то и другое (on-off-реакция).